GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 422 (2003), S. 277-277 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The conversion of surface water to deep water in the North Atlantic results in the release of heat from the ocean to the atmosphere, which may have amplified millennial-scale climate variability during glacial times and could even have contributed to the past 11,700 years of relatively mild ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 429 (2004), S. 611-612 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Millennium after millennium, the snow falling on Greenland and Antarctica has built up deep ice sheets that are invaluable archives of past conditions on Earth. Antarctica has now yielded the longest ice-core record yet, one that covers a staggering 740,000 years, with more to come. This ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-19
    Description: It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth's climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the similar to 100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and delta O-18 record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and similar to 13 +/- 2 kyr before the delta O-18 minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7-1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the delta O-18 record diminishes, while the tephra record maintains its strong 100 kyr periodicity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-06
    Description: The role of millennial scale climate variability in supplementing the astronomical forcing of glacial-interglacial transitions remains a major unresolved question. Here we compare the occurrence and character of "terminal" ice rafting events in both the North and South Atlantic during the last deglaciation (Termination I, TI) and during the transition between Marine Isotope Stages (MIS) 12 and 11 (or Termination V. TV). We show that TV experienced a massive terminal ice rafting event in the North Atlantic that was more intense and longer lasting than Heinrich event 1 (H1) of the last deglaciation. This massive ice rafting event was linked to cold stadial conditions and reduced deep water formation in the North Atlantic, in parallel with warming at high southern latitudes, similar to the bipolar seesaw pattern exhibited during H1 over the last deglaciation. We propose that the particular intensity and duration of the TV ice rafting event resulted from the especially large volume of Northern Hemisphere ice sheets during MIS12. In turn, the unusually long duration and large amplitude of TV likely resulted from the exceptionally prolonged collapse of the AMOC during the TV Heinrich stadia], and from a subsequent transient AMOC "overshoot" with respect to later MIS11 interglacial circulation. Furthermore, we suggest that the intense Heinrich stadial of TV contributed to the deglaciation primarily via meridional heat transport anomalies that would have enhanced the incipient warming arising from relatively weak insolation forcing, and only secondarily via CO2 release
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-26
    Description: Highlights • North Atlantic records indicate an intense Heinrich stadial (HS) during Termination V. • The HS probably resulted from extreme glacial conditions during MIS12. • The HS curtailed AMOC, shaping TV via meridional heat transport anomalies. • The rate of CO2 release during the HS of TV was lower than during HS1. • North Atlantic overturning during MIS11 was enhanced with respect to the Holocene. Abstract The role of millennial scale climate variability in supplementing the astronomical forcing of glacial–interglacial transitions remains a major unresolved question. Here we compare the occurrence and character of “terminal” ice rafting events in both the North and South Atlantic during the last deglaciation (Termination I, TI) and during the transition between Marine Isotope Stages (MIS) 12 and 11 (or Termination V, TV). We show that TV experienced a massive terminal ice rafting event in the North Atlantic that was more intense and longer lasting than Heinrich event 1 (H1) of the last deglaciation. This massive ice rafting event was linked to cold stadial conditions and reduced deep water formation in the North Atlantic, in parallel with warming at high southern latitudes, similar to the bipolar seesaw pattern exhibited during H1 over the last deglaciation. We propose that the particular intensity and duration of the TV ice rafting event resulted from the especially large volume of Northern Hemisphere ice sheets during MIS12. In turn, the unusually long duration and large amplitude of TV likely resulted from the exceptionally prolonged collapse of the AMOC during the TV Heinrich stadial, and from a subsequent transient AMOC “overshoot” with respect to later MIS11 interglacial circulation. Furthermore, we suggest that the intense Heinrich stadial of TV contributed to the deglaciation primarily via meridional heat transport anomalies that would have enhanced the incipient warming arising from relatively weak insolation forcing, and only secondarily via CO2 release.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: Highlights • Novel multi-disciplinary approach to tracing freshwater and particle transport into boundary currents; • Significant glacial inputs reach coastal waters and are transported rapidly offshore; • Low surface water dissolved silicon concentrations maintained by diatom activity despite strong glacial and benthic supplies. Abstract Biogeochemical cycling in high-latitude regions has a disproportionate impact on global nutrient budgets. Here, we introduce a holistic, multi-disciplinary framework for elucidating the influence of glacial meltwaters, shelf currents, and biological production on biogeochemical cycling in high-latitude continental margins, with a focus on the silica cycle. Our findings highlight the impact of significant glacial discharge on nutrient supply to shelf and slope waters, as well as surface and benthic production in these regions, over a range of timescales from days to thousands of years. Whilst biological uptake in fjords and strong diatom activity in coastal waters maintains low dissolved silicon concentrations in surface waters, we find important but spatially heterogeneous additions of particulates into the system, which are transported rapidly away from the shore. We expect the glacially-derived particles – together with biogenic silica tests – to be cycled rapidly through shallow sediments, resulting in a strong benthic flux of dissolved silicon. Entrainment of this benthic silicon into boundary currents may supply an important source of this key nutrient into the Labrador Sea, and is also likely to recirculate back into the deep fjords inshore. This study illustrates how geochemical and oceanographic analyses can be used together to probe further into modern nutrient cycling in this region, as well as the palaeoclimatological approaches to investigating changes in glacial meltwater discharge through time, especially during periods of rapid climatic change in the Late Quaternary.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-07-01
    Description: Paleoclimate evidence from South America and Asia has been interpreted to indicate that tropical rainfall migrated southward during the Northern Hemisphere cooling associated with Heinrich stadial 1 (HS1), an event of massive iceberg discharge to the North Atlantic ca. 18–15 ka. Although arid conditions associated with such a shift are well documented in southern Asia, as far south as Borneo, debate still exists regarding the precipitation response in southern Indonesia and Australia during HS1. This study utilizes concentrations of the long-lived nuclide 232Th as a proxy for detrital riverine input and 230Th normalization to estimate the history of preserved fluxes reaching the seafloor in the Flores Sea, located between southern Sulawesi and the Lesser Sunda Islands, Indonesia. Because the only source of 232Th to the ocean is continental minerals, this proxy is a robust indicator of continental weathering. The 230Th normalized burial fluxes of lithogenic and biogenic matter demonstrate that both detrital and biogenic fluxes in the Flores Sea were higher during HS1 than any other period in the past 22 k.y. High detrital fluxes indicate enhanced precipitation runoff from surrounding landmasses during a period of maximum southward shift of the Intertropical Convergence Zone. This study further constrains the northern limit of enhanced rainfall associated with a southward shift of Australian monsoon-related rainfall at the time of HS1 and highlights the value of 232Th as a proxy of continental input to deep-sea sediment records.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stanford, Jennifer; Rohling, Eelco J; Hunter, Sally E; Roberts, Andrew P; Rasmussen, Sune Olander; Bard, Edouard; McManus, Jerry F; Fairbanks, Richard G (2006): Timing of meltwater pulse 1a and climate responses to meltwater injections. Paleoceanography, 21(4), PA4103, https://doi.org/10.1029/2006PA001340
    Publication Date: 2024-03-02
    Description: The temporal relationship between meltwater pulse 1a (mwp-1a) and the climate history of the last deglaciation remains a subject of debate. By combining the Greenland Ice Core Project d18O ice core record on the new Greenland ice core chronology 2005 timescale with the U/Th-dated Barbados coral record, we conclusively derive that mwp-1a did not coincide with the sharp Bølling warming but instead with the abrupt cooling of the Older Dryas. To evaluate whether there is a relationship between meltwater injections, North Atlantic Deep Water (NADW) formation, and climate change, we present a high-resolution record of NADW flow intensity from Eirik Drift through the last deglaciation. It indicates only a relatively minor 200-year weakening of NADW flow, coincident with mwp-1a. Our compilation of records also indicates that during Heinrich event 1 and the Younger Dryas there were no discernible sea level rises, and yet these periods were characterized by intense NADW slowdowns/shutdowns. Clearly, deepwater formation and climate are not simply controlled by the magnitude or rate of meltwater addition. Instead, our results emphasize that the location of meltwater pulses may be more important, with NADW formation being particularly sensitive to surface freshening in the Arctic/Nordic Seas.
    Keywords: Age, 14C calibrated, CALIB REV 5.0.1 (Stuiver & Reimer 2005); Age, 14C conventional; Age, dated; Age, dated material; Age, dated standard deviation; Age, maximum/old; Age, minimum/young; Calendar age; Core; CORE; DEPTH, sediment/rock; North Atlantic; Professor Logachev; TTR-13; TTR-451; Δ R
    Type: Dataset
    Format: text/tab-separated-values, 49 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: McManus, Jerry F; Francois, Roger; Gherardi, Jeanne-Marie; Keigwin, Lloyd D; Brown Leger, Susan (2004): Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428(6985), 834-837, https://doi.org/10.1038/nature02494
    Publication Date: 2024-03-02
    Description: The Atlantic meridional overturning circulation is widely believed to affect climate. Changes in ocean circulation have been inferred from records of the deep water chemical composition derived from sedimentary nutrient proxies (Boyle and Keigwin, 1987, doi:10.1038/330035a0), but their impact on climate is difficult to assess because such reconstructions provide insufficient constraints on the rate of overturning (LeGrand and Wunsch, 1995, doi:10.1029/95PA01455). Here we report measurements of 231Pa/230Th, a kinematic proxy for the meridional overturning circulation, in a sediment core from the subtropical North Atlantic Ocean. We find that the meridional overturning was nearly, or completely, eliminated during the coldest deglacial interval in the North Atlantic region, beginning with the catastrophic iceberg discharge Heinrich event H1, 17,500 yr ago, and declined sharply but briefly into the Younger Dryas cold event, about 12,700 yr ago. Following these cold events, the 231Pa/230Th record indicates that rapid accelerations of the meridional overturning circulation were concurrent with the two strongest regional warming events during deglaciation. These results confirm the significance of variations in the rate of the Atlantic meridional overturning circulation for abrupt climate changes.
    Keywords: Age, 14C AMS; Age, 14C calibrated, CALIB 4.3 (Stuiver et al., 1998); Age, dated; Age, dated material; Age, dated standard deviation; Calendar age; DEPTH, sediment/rock; GC; GGC5; Gravity corer; North Atlantic; OCE326-GGC5
    Type: Dataset
    Format: text/tab-separated-values, 64 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Costa, K M; McManus, Jerry F; Boulahanis, B; Carbotte, S M; Winckler, Gisela; Huybers, Peter; Langmuir, Charles H (2016): Sedimentation, stratigraphy and physical properties of sediment on the Juan de Fuca Ridge. Marine Geology, 380, 163-173, https://doi.org/10.1016/j.margeo.2016.08.003
    Publication Date: 2024-03-02
    Description: Sedimentation near mid-ocean ridges may differ from pelagic sedimentation due to the influence of the ridges' rough topography on sediment deposition and transport. This study explores whether the near-ridge environment responds to glacial-interglacial changes in climate and oceanography. New benthic d18O, radiocarbon, multi-sensor track, and physical property (sedimentation rates, density, magnetic susceptibility) data for seven cores on the Juan de Fuca Ridge provide multiple records covering the past 700,000 years of oceanographic history of the Northeast Pacific Ocean. Systematic variations in sediment density and coarse fraction correspond to glacial-interglacial cycles identified in benthic d18O, and these observations may provide a framework for mapping the d18O chronostratigraphy via sediment density to other locations on the Juan de Fuca Ridge and beyond. Sedimentation rates generally range from 0.5 to 3 cm/kyr, with background pelagic sedimentation rates close to 1 cm/kyr. Variability in sedimentation rates close to the ridge likely reflects remobilization of sediment caused by the high relief of the ridge bathymetry. Sedimentation patterns primarily reflect divergence of sedimentation rates with distance from the ridge axis and glacial-interglacial variation in sedimentation that may reflect carbonate preservation cycles as well as preferential remobilization of fine material.
    Keywords: Age, 14C calibrated; Age, dated; Age, dated material; Age, dated standard deviation; AT26-19; AT26-19-05PC; AT26-19-09PC; AT26-19-12PC; AT26-19-38PC; Atlantis (1997); Calendar age; Calendar age, standard deviation; DEPTH, sediment/rock; Event label; Juan de Fuca Ridge, North Pacific Ocean; Latitude of event; Longitude of event; PC; Piston corer; Sample ID; see further details
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...