GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
  • 1
    Publication Date: 2023-11-08
    Keywords: 33RO20150410; 33RO20150410-track; CT; DATE/TIME; Image number/name; LATITUDE; LONGITUDE; Particle concentration, fractionated; Pressure, water; Profile; Ronald H. Brown; Sample code/label; Sample elevation; Underway cruise track measurements; Volume
    Type: Dataset
    Format: text/tab-separated-values, 1526274 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kiko, Rainer; Biastoch, Arne; Brandt, Peter; Cravatte, Sophie; Hauss, Helena; Hummels, Rebecca; Kriest, Iris; Marin, Frédéric; McDonnell, Andrew; Oschlies, Andreas; Picheral, Marc; Schwarzkopf, Franziska; Thurnherr, Andreas M; Stemmann, Lars (2017): Biological and physical influences on marine snowfall at the equator. Nature Geoscience, https://doi.org/10.1038/NGEO3042
    Publication Date: 2023-11-09
    Description: High primary productivity in the equatorial Atlantic and Pacific oceans is one of the key features of tropical ocean biogeochemistry and fuels a substantial flux of particulate matter towards the abyssal ocean. How biological processes and equatorial current dynamics shape the particle size distribution and flux, however, is poorly understood. Here we use high-resolution size-resolved particle imaging and Acoustic Doppler Current Profiler data to assess these influences in equatorial oceans. We find an increase in particle abundance and flux at depths of 300 to 600 m at the Atlantic and Pacific equator, a depth range to which zooplankton and nekton migrate vertically in a daily cycle. We attribute this particle maximum to faecal pellet production by these organisms. At depths of 1,000 to 4,000 m, we find that the particulate organic carbon flux is up to three times greater in the equatorial belt (1° S–1° N) than in off-equatorial regions. At 3,000 m, the flux is dominated by small particles less than 0.53 mm in diameter. The dominance of small particles seems to be caused by enhanced active and passive particle export in this region, as well as by the focusing of particles by deep eastward jets found at 2° N and 2° S. We thus suggest that zooplankton movements and ocean currents modulate the transfer of particulate carbon from the surface to the deep ocean.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-20
    Description: Particle size distribution data was collected during multiple cruises globally with several regularly intercalibrated Underwater Vision Profilers, Version 5 (UVP5; Picheral et al 2010). During the respective cruises, the UVP5 was mounted on the CTD-Rosette or as a standalone instrument and deployed in vertical mode. The UVP5 takes pictures of an illuminated watervolume of about 1 Liter every few milliseconds. Imaged items are counted, their size measured and abundance and biovolume of the particles is calculated. For different size bins, this information is summarized in the columns "Particle concentration" and "Particle biovolume". For further details please refer to Kiko et al. (in prep.) "A global marine particle size distribution dataset obtained with the Underwater Vision Profiler 5".
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; global; in situ imaging; particle distribution; SFB754; UVP5
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 193-216, doi:10.5194/bg-10-193-2013.
    Description: Due to seasonal upwelling, the upper ocean waters of the California Current System (CCS) have a naturally low pH and aragonite saturation state (Ωarag), making this region particularly prone to the effects of ocean acidification. Here, we use the Regional Oceanic Modeling System (ROMS) to conduct preindustrial and transient (1995–2050) simulations of ocean biogeochemistry in the CCS. The transient simulations were forced with increasing atmospheric pCO2 and increasing oceanic dissolved inorganic carbon concentrations at the lateral boundaries, as projected by the NCAR CSM 1.4 model for the IPCC SRES A2 scenario. Our results show a large seasonal variability in pH (range of ~ 0.14) and Ωarag (~ 0.2) for the nearshore areas (50 km from shore). This variability is created by the interplay of physical and biogeochemical processes. Despite this large variability, we find that present-day pH and Ωarag have already moved outside of their simulated preindustrial variability envelopes (defined by ±1 temporal standard deviation) due to the rapidly increasing concentrations of atmospheric CO2. The nearshore surface pH of the northern and central CCS are simulated to move outside of their present-day variability envelopes by the mid-2040s and late 2030s, respectively. This transition may occur even earlier for nearshore surface Ωarag, which is projected to depart from its present-day variability envelope by the early- to mid-2030s. The aragonite saturation horizon of the central CCS is projected to shoal into the upper 75 m within the next 25 yr, causing near-permanent undersaturation in subsurface waters. Due to the model's overestimation of Ωarag, this transition may occur even earlier than simulated by the model. Overall, our study shows that the CCS joins the Arctic and Southern oceans as one of only a few known ocean regions presently approaching the dual threshold of widespread and near-permanent undersaturation with respect to aragonite and a departure from its variability envelope. In these regions, organisms may be forced to rapidly adjust to conditions that are both inherently chemically challenging and also substantially different from past conditions.
    Description: C. H. was supported by the European Project of Ocean Acidification (EPOCA), which received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 211384. EPOCA is endorsed by the international programs Integrated Marine Biogeochemistry and Ecosystem Research (IMBER), Land-Ocean Interactions in the Coastal Zone (LOICZ), and Surface Ocean Lower Atmosphere Study (SOLAS). C. H., M. V., Z. L., A. M. P. M. and N. G. also acknowledge support by ETH Zurich. S. D. acknowledges support from NASA-NNX11AF55G.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 37 (2010): L22606, doi:10.1029/2010GL045448.
    Description: Drifting cylindrical traps and the flux proxy 234Th indicate more than an order of magnitude higher sinking fluxes of particulate carbon and 234Th in January 2009 than measured by a time-series conical trap used regularly on the shelf of the west Antarctic Peninsula (WAP). The higher fluxes measured in this study have several implications for our understanding of the WAP ecosystem. Larger sinking fluxes result in a revised export efficiency of at least 10% (C flux/net primary production) and a requisite lower regeneration efficiency in surface waters. High fluxes also result in a large supply of sinking organic matter to support subsurface and benthic food webs on the continental shelf. These new findings call into question the magnitude of seasonal and interannual variability in particle flux and reaffirm the difficulty of using moored conical traps as a quantitative flux collector in shallow waters.
    Description: Funding was provided by the WHOI Rinehart Access to the Sea program, the WHOI Coastal Oceans Institute, WHOI Academic Programs Office, and most significantly, from the NSF Office of Polar Programs for the PAL‐LTER (OPP 0823101), FOODBANCS and WAP Flux projects (OPP 0838866).
    Keywords: Particle export ; Sediment trap ; Thorium-234
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2011
    Description: The sinking flux of particulate matter into the ocean interior is an oceanographic phenomenon that fuels much of the metabolic demand of the subsurface ocean and affects the distribution of carbon and other elements throughout the biosphere. In this thesis, I use a new suite of observations to study the dynamics of marine particulate matter at the contrasting sites of the subtropical Sargasso Sea near Bermuda and the waters above the continental shelf of the Western Antarctic Peninsula (WAP). An underwater digital camera system was employed to capture images of particles in the water column. The subsequent analysis of these images allowed for the determination of the particle concentration size distribution at high spatial, depth, and temporal resolutions. Drifting sediment traps were also deployed to assess both the bulk particle flux and determine the size distribution of the particle flux via image analysis of particles collected in polyacrylamide gel traps. The size distribution of the particle concentration and flux were then compared to calculate the average sinking velocity as a function of particle size. I found that the average sinking velocities of particles ranged from about 10-200 m d-1 and exhibited large variability with respect to location, depth, and date. Particles in the Sargasso Sea, which consisted primarily of small heterogeneous marine snow aggregates, sank more slowly than the rapidly sinking krill fecal pellets and diatom aggregates of the WAP. Moreover, the average sinking velocity did not follow a pattern of increasing velocities for the larger particles, a result contrary to what would be predicted from a simple formulation of Stokes’ Law. At each location, I derived a best-fit fractal correlation between the flux size distribution and the total carbon flux. The use of this relationship and the computed average sinking velocities enabled the estimation of particle flux from measurements of the particle concentration size distribution. This approach offers greatly improved spatial and temporal resolution when compared to traditional sediment trap methods for measuring the downward flux of particulate matter. Finally, I deployed specialized in situ incubation chambers to assess the respiration rates of microbes attached to sinking particles. I found that at Bermuda, the carbon specific remineralization rate of sinking particulate matter ranged from 0.2 to 1.1 d-1, while along the WAP, these rates were very slow and below the detection limit of the instruments. The high microbial respiration rates and slow sinking velocities in the Sargasso Sea resulted in the strong attenuation of the flux with respect to depth, whereas the rapid sinking velocities and slow microbial degradation rates of the WAP resulted in nearly constant fluxes with respect to depth.
    Description: The Scurlock Bermuda Biological Station for Research Fund provided travel support to and from Bermuda. A grant from the National Science Foundation (NSF) Carbon and Water Program (06028416) enabled all the Sargasso Sea research as well as the opportunity to develop and test much of the methodology presented in this thesis. Internal awards from the WHOI Rinehart Access to the Sea Program and the WHOI Coastal Oceans Institute provided early funding that supported my first season of research in Antarctica and were instrumental in securing the larger external NSF Office of Polar Programs (OPP) Western Antarctic Peninsula Flux Project (OPP 0838866) grant for a second year of science in the region. The NSF OPP Palmer Long-Term Ecological Research Project and the Food for Benthos on the Antarctic Continental Shelf Project provided logistical support in the region. Phoebe Lam and Scott Doney’s grant from the WHOI Ocean Carbon and Climate Institute supported a semester of my time. The Henry G. Houghton Fund and the MIT Student Assistance Fund subsidized educational costs, textbooks, equipment, and travel expenses to conferences. In my first year I was supported by funding from Scott Doney’s NSF grant (OCCE-0312710).
    Keywords: Sediment transport ; Carbon cycle ; Laurence M. Gould (Ship) Cruise LMG0901 ; Laurence M. Gould (Ship) Cruise LMG0902 ; Laurence M. Gould (Ship) Cruise LMG1001 ; Nathaniel B. Palmer (Ship) Cruise NBP1002
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 175–193, doi:10.1002/2014GB004935.
    Description: The attenuation of sinking particle fluxes through the mesopelagic zone is an important process that controls the sequestration of carbon and the distribution of other elements throughout the oceans. Case studies at two contrasting sites, the oligotrophic regime of the Bermuda Atlantic Time-series Study (BATS) and the mesotrophic waters of the west Antarctic Peninsula (WAP) sector of the Southern Ocean, revealed large differences in the rates of particle-attached microbial respiration and the average sinking velocities of marine particles, two parameters that affect the transfer efficiency of particulate matter from the base of the euphotic zone into the deep ocean. Rapid average sinking velocities of 270 ± 150 m d−1 were observed along the WAP, whereas the average velocity was 49 ± 25 m d−1 at the BATS site. Respiration rates of particle-attached microbes were measured using novel RESPIRE (REspiration of Sinking Particles In the subsuRface ocEan) sediment traps that first intercepts sinking particles then incubates them in situ. RESPIRE experiments yielded flux-normalized respiration rates of 0.4 ± 0.1 day−1 at BATS when excluding an outlier of 1.52 day−1, while these rates were undetectable along the WAP (0.01 ± 0.02 day−1). At BATS, flux-normalized respiration rates decreased exponentially with respect to depth below the euphotic zone with a 75% reduction between the 150 and 500 m depths. These findings provide quantitative and mechanistic insights into the processes that control the transfer efficiency of particle flux through the mesopelagic and its variability throughout the global oceans.
    Description: Funding was provided by the University of Alaska Fairbanks, Woods Hole Oceanographic Institution (WHOI) Rinehart Access to the Sea Program, the WHOI Coastal Oceans Institute, WHOI Academic Programs Office, and the National Science Foundation (NSF) for support of PAL (ANT-0823101), FOODBANCS, and WAPflux (ANT- 83886600) projects. A grant from the NSF Carbon and Water Program (06028416) supported the development of these methods.
    Description: 2015-08-25
    Keywords: Biological pump ; Marine particles ; Carbon flux ; Sinking velocity ; Microbial respiration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 10 (2012): 329-346, doi:10.4319/lom.2012.10.329.
    Description: We describe a new method for estimating sinking particulate carbon fluxes at high spatial and temporal resolutions from measurements of the particle concentration size distribution taken with an in situ camera system, in this case an autonomous video plankton recorder (VPR). Paired measurements of polyacrylamide gel traps and the VPR result in depth- and size-resolved parameterizations of the average sinking velocity, which enable the estimation of the flux size distribution from the concentration size distribution. Comparisons between the gel traps and the bulk carbon flux allows for the parameterization of the particle carbon content as a function of size. Together, these parameterizations permit the estimation of carbon fluxes from high-resolution VPR surveys. This method enables greater spatial, vertical, and temporal resolution of flux measurements beyond what is possible with conventional sediment traps. We tested this method in the Sargasso Sea and found that it was capable of accurately reproducing the fluxes measured in sediment traps while offering substantial improvement in the accuracy of the estimated fluxes compared to previous global and regional parameterizations. Our results point to the importance of local calibrations of the average sinking velocity and particle carbon content when estimating carbon fluxes from measurement of the concentration size distribution. This method holds important oceanographic potential for elucidating regional or basin scale carbon flows and providing new mechanistic insights into the function of the biological pump.
    Description: This project was made possible through funding from the National Science Foundation Carbon and Water Program (06028416), the Woods Hole Oceanographic Institution Academic Programs Office, ETH Zürich, and the Scurlock Bermuda Biological Station for Research Fund.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-08-08
    Description: Aim: The distribution of mesoplankton communities has been poorly studied at global scale, especially from in situ instruments. This study aims to (1) describe the global distribution of mesoplankton communities in relation to their environment and (2) as-sess the ability of various environmental- based ocean regionalizations to explain the distribution of these communities. Location: Global ocean, 0–500 m depth. Time Period: 2008–2019. Major Taxa Studied: Twenty-eight groups of large mesoplanktonic and macroplank-tonic organisms, covering Metazoa, Rhizaria and Cyanobacteria. Methods: From a global data set of 2500 vertical profiles making use of the Underwater Vision Profiler 5 (UVP5), an in situ imaging instrument, we studied the global distribu-tion of large (〉600 μm) mesoplanktonic organisms. Among the 6.8 million imaged ob-jects, 330,000 were large zooplanktonic organisms and phytoplankton colonies, the rest consisting of marine snow particles. Multivariate ordination (PCA) and clustering were used to describe patterns in community composition, while comparison with existing regionalizations was performed with regression methods (RDA). Results: Within the observed size range, epipelagic plankton communities were Trichodesmium- enriched in the intertropical Atlantic, Copepoda- enriched at high latitudes and in upwelling areas, and Rhizaria-enriched in oligotrophic areas. In the mesopelagic layer, Copepoda-enriched communities were also found at high lati-tudes and in the Atlantic Ocean, while Rhizaria-enriched communities prevailed in the Peruvian upwelling system and a few mixed communities were found elsewhere. The comparison between the distribution of these communities and a set of existing regionalizations of the ocean suggested that the structure of plankton communities described above is mostly driven by basin- level environmental conditions. Main Conclusions: In both layers, three types of plankton communities emerged and seemed to be mostly driven by regional environmental conditions. This work sheds light on the role not only of metazoans, but also of unexpected large protists and cy-anobacteria in structuring large mesoplankton communities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-08-01
    Description: Marine particles of different nature are found throughout the global ocean. The term "marine particles"describes detritus aggregates and fecal pellets as well as bacterioplankton, phytoplankton, zooplankton and nekton. Here, we present a global particle size distribution dataset obtained with several Underwater Vision Profiler 5 (UVP5) camera systems. Overall, within the 64 μm to about 50 mm size range covered by the UVP5, detrital particles are the most abundant component of all marine particles; thus, measurements of the particle size distribution with the UVP5 can yield important information on detrital particle dynamics. During deployment, which is possible down to 6000 m depth, the UVP5 images a volume of about 1 L at a frequency of 6 to 20 Hz. Each image is segmented in real time, and size measurements of particles are automatically stored. All UVP5 units used to generate the dataset presented here were inter-calibrated using a UVP5 high-definition unit as reference. Our consistent particle size distribution dataset contains 8805 vertical profiles collected between 19 June 2008 and 23 November 2020. All major ocean basins, as well as the Mediterranean Sea and the Baltic Sea, were sampled. A total of 19 % of all profiles had a maximum sampling depth shallower than 200 dbar, 38 % sampled at least the upper 1000 dbar depth range and 11 % went down to at least 3000 dbar depth. First analysis of the particle size distribution dataset shows that particle abundance is found to be high at high latitudes and in coastal areas where surface productivity or continental inputs are elevated. The lowest values are found in the deep ocean and in the oceanic gyres. Our dataset should be valuable for more in-depth studies that focus on the analysis of regional, temporal and global patterns of particle size distribution and flux as well as for the development and adjustment of regional and global biogeochemical models. The marine particle size distribution dataset is available at 10.1594/PANGAEA.924375.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...