GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2011-08-01
    Description: Diatom-rich sediments are common in several oceanic regions, especially the Southern Ocean. Some of these are strongly affected by bottom currents and are expected to be sorted by the flow. Examination of data on diatoms' response by instruments commonly used for size measurement is presented here. Diatoms are silt- to fine sand-size, filigree silica structures of many shapes with high porosity, thus both the bulk density and shape strongly influence the "size" that is calculated from measurements. We document the particle size of diatoms measured by instruments based on settling velocity (Sedigraph), electrical resistance pulse counting (Coulter counter), and laser diffraction (Malvern laser sizer). The Malvern laser consistently measures the largest diameters, followed by the Coulter counter and then settling-based techniques. Relationships between these inferred sizes (all expressed as quartz-equivalent spherical diameters) have implications for the physical properties of diatom tests. Earlier work has demonstrated that laser diffraction responds to the particles' external projected area. The effects of both low effective density and irregular shape of diatoms (compared with terrigenous grains) on their settling velocity causes the Sedigraph to indicate relatively small diameters. Shape effects are less pronounced for quasi-spherical diatom species. The Coulter counter records the diatoms' solid volume and is relatively unaffected by their density or shape. The measurement of different physical parameters by these instruments offers a basis for estimation of diatom porosity (fluid-occupied volume within the test). Measurements of the external diameter and solid volume allow estimates of porosity {Phi}. For (laser) sizes 〉 20 {micro}m this is {Phi} = 75-95%, which can be quite well modeled as a perforated spherical shell of wall thickness ~ 1-1.5 {micro}m. For paleocurrent interpretations, a settling-based technique makes Sedigraph measurements of particle size the most useful, but the visual size is best given by laser.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Earth and Planetary Science Letters, ELSEVIER SCIENCE BV, 301, pp. 373-381, ISSN: 0012-821X
    Publication Date: 2019-07-17
    Description: In locations of rapid sediment accumulation receiving substantial amounts of laterally transported material the timescales of transport and accurate quantification of the transportedmaterial are at the focus of intense research. Here we present radiocarbon data obtained on co-occurring planktic foraminifera, marine haptophyte biomarkers (alkenones) and total organic carbon (TOC) coupled with excess Thorium-230 (230Thxs)measurements on four sediment cores retrieved in 1649–2879 mwater depth fromtwo such high accumulation drift deposits in the Northeast Atlantic, Björn and Gardar Drifts.While 230Thxs inventories imply strong sediment focussing, no age offsets are observed between planktic foraminifera and alkenones, suggesting that redistribution of sediments is rapid and occurs soon after formation ofmarine organic matter, or that transported material contains negligible amounts of alkenones. An isotopic mass balance calculation based on radiocarbon concentrations of co-occurring sediment components leads us to estimate that transported sediment components contain up to 12% of fossil organic matter that is free of or very poor in alkenones, but nevertheless appears to consist of a mixture of fresh and eroded fossil material. Considering all available constraints to characterize transported material, our results showthat although focussing factors calculated frombulk sediment 230Thxs inventoriesmay allowuseful approximations of bulk redeposition, they do not provide a unique estimate of the amount of each laterally transported sediment component. Furthermore, our findings provide evidence that the occurrence of lateral sediment redistribution alone does not always hinder the use ofmultiple proxies but that individual sediment fractions are affected to variable extents by sediment focussing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 28 (2013): 237–252, doi:10.1002/palo.20024.
    Description: The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and δ11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater B(OH)4−/HCO3− with a roughly constant partition coefficient of 1.48 ± 0.15 × 10−3 (2σ), and δ11B in this species is offset below δ11B of the borate in seawater by 3.38 ± 0.71‰ (2σ). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 × 10−3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10–50 ppmv during 19–10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution δ11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.
    Description: This research is funded by Lamont-Doherty Postdoctoral Fellowship, Lawrence Livermore Fellowship and the Australian National University (J.Y.), by NERC RAPID grant NER/T/S/2002/00436 (N. M. and D. T.), and by a NERC PhD studentship (J.R.).
    Description: 2013-11-30
    Keywords: Neogloboquadrina pachyderma (s) ; B/Ca, Cd/Ca, d11B ; Subsurface pH and pCO2 and nutrients
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 3414–3435, doi:10.1002/2015GC005947.
    Description: Overflow of Northern Component Water, the precursor of North Atlantic Deep Water, appears to have varied during Neogene times. It has been suggested that this variation is moderated by transient behavior of the Icelandic mantle plume, which has influenced North Atlantic bathymetry through time. Thus pathways and intensities of bottom currents that control deposition of contourite drifts could be affected by mantle processes. Here, we present regional seismic reflection profiles that cross sedimentary accumulations (Björn, Gardar, Eirik, and Hatton Drifts). Prominent reflections were mapped and calibrated using a combination of boreholes and legacy seismic profiles. Interpreted seismic profiles were used to reconstruct solid sedimentation rates. Björn Drift began to accumulate in late Miocene times. Its average sedimentation rate decreased at ∼2.5 Ma and increased again at ∼0.75 Ma. In contrast, Eirik Drift started to accumulate in early Miocene times. Its average sedimentation rate increased at ∼5.5 Ma and decreased at ∼2.2 Ma. In both cases, there is a good correlation between sedimentation rates, inferred Northern Component Water overflow, and the variation of Icelandic plume temperature independently obtained from the geometry of diachronous V-shaped ridges. Between 5.5 and 2.5 Ma, the plume cooled, which probably caused subsidence of the Greenland-Iceland-Scotland Ridge, allowing drift accumulation to increase. When the plume became hotter at 2.5 Ma, drift accumulation rate fell. We infer that deep-water current strength is modulated by fluctuating dynamic support of the Greenland-Scotland Ridge. Our results highlight the potential link between mantle convective processes and ocean circulation.
    Description: Natural Environment Research Council Grant Number: NE/G007632/1; The University of Cambridge Girdler Fund; BP Exploration
    Description: 2016-04-15
    Keywords: Contourite ; Drift ; Iceland ; Plume
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Climate of the Past 9 (2013): 2073-2084, doi:10.5194/cp-9-2073-2013.
    Description: The overflow of deep water from the Nordic seas into the North Atlantic plays a critical role in global ocean circulation and climate. Approximately half of this overflow occurs via the Iceland–Scotland (I–S) overflow, yet the history of its strength throughout the Holocene (~ 0–11 700 yr ago, ka) is poorly constrained, with previous studies presenting apparently contradictory evidence regarding its long-term variability. Here, we provide a comprehensive reconstruction of I–S overflow strength throughout the Holocene using sediment grain size data from a depth transect of 13 cores from the Iceland Basin. Our data are consistent with the hypothesis that the main axis of the I–S overflow on the Iceland slope was shallower during the early Holocene, deepening to its present depth by ~ 7 ka. Our results also reveal weaker I–S overflow during the early and late Holocene, with maximum overflow strength occurring at ~ 7 ka, the time of a regional climate thermal maximum. Climate model simulations suggest a shoaling of deep convection in the Nordic seas during the early and late Holocene, consistent with our evidence for weaker I–S overflow during these intervals. Whereas the reduction in I–S overflow strength during the early Holocene likely resulted from melting remnant glacial ice sheets, the decline throughout the last 7000 yr was caused by an orbitally induced increase in the amount of Arctic sea ice entering the Nordic seas. Although the flux of Arctic sea ice to the Nordic seas is expected to decrease throughout the next century, model simulations predict that under high emissions scenarios, competing effects, such as warmer sea surface temperatures in the Nordic seas, will result in reduced deep convection, likely driving a weaker I–S overflow.
    Description: Funding was provided by NERC RAPID grant NER/T/S/2002/00436 to I. N. McCave, and a WHOI OCCI post-doctoral scholarship to D. J. R. Thornalley. Work on EW9302 cores was supported by NSF grant OCE01- 18001 to D. W. Oppo and J. F. McManus. The contributions of J. F. McManus and S. Praetorius were also supported in part by the Comer Research and Education Foundation. M. Blaschek,F. J. Davies and H. Renssen are supported by the European Community’s 7th Framework Programme FP7 2007/2013, Marie-Curie Actions, under Grant Agreement No. 10 238111 CASE ITN.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: From the Foreward: Despite the currently fashionable use of the word "interdisciplinary" to describe research projects, few such efforts are known among oceanographers studying the benthic boundary layer (BBL). In order to encourage discussions among the diverse groups interested in deep-sea BBL problems and to begin the coordination of experiments, the Office of Naval Research (Code 480) has recently sponsored two workshops. In March 1977 a group of investigators with ONR-supported projects met at the Naval Ocean Research and Development Activity (NORDA) in Bay St. Louis, Mississippi to define scientific and geographic areas of interest. A large group of investigators met for a more ambitious workshop at the Keystone Conference Center, Keystone, Colorado, from March 13 to 17, 1978. This report summarizes the deliberations of that second workshop.
    Description: Prepared for the Office of Naval Research under Contract N00014-74-C0262, NR083-004
    Keywords: Ocean bottom ; Benthos
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Thomas, Alexander L; Henderson, Gideon M; McCave, I Nick (2007): Constant bottom water flow into the Indian Ocean for the past 140 ka indicated by sediment 231PAPa/230Th ratios. Paleoceanography, 22(4), PA4210, https://doi.org/10.1029/2007PA001415
    Publication Date: 2023-05-12
    Description: A down-core 231Pa/230Th record has been measured from the southwestern Indian Ocean to reconstruct the history of deep water flow into this basin over the last glacial-interglacial cycle. The (231Paxs/230Thxs)0 ratio throughout the record is nearly constant at approximately 0.055, significantly lower than the production ratio of 0.093, indicating that the proxy is sensitive to changes in circulation and/or sediment flux at this site. The consistent value suggests that there has been no change in the inflow of Antarctic Bottom Water to the Indian Ocean during the last 140 ka, in contrast to the changes in deep circulation thought to occur in other ocean basins. The stability of the (231Paxs/230Thxs)0 value in the record contrasts with an existing sortable silt (SS) record from the same core. The observed equation image variability is attributed to a local geostrophic effect amplifying small changes in circulation. A record of authigenic U from the same core suggests that there was reduced oxygen in bottom waters at the core locality during glacial periods. The consistency of the (231Paxs/230Thxs)0 record implies that this could not have arisen by local changes in productivity, thus suggesting a far-field control: either globally reduced bottom water oxygenation or increased productivity south of the Opal Belt during glacials.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hoogakker, Babette A A; McCave, I Nick; Elderfield, Henry; Hillaire-Marcel, Claude; Simstich, Johannes (2015): Holocene climate variability in the Labrador Sea. Journal of the Geological Society, 172(2), 272-277, https://doi.org/10.1144/jgs2013-097
    Publication Date: 2023-05-12
    Description: Formation of Labrador Sea Water proper commenced about 7000 years ago during the Holocene interglacial. To test whether fresher surface water conditions may have inhibited Labrador Sea Water convection during the early Holocene we measured planktonic foraminiferal (Globigerina bulloides) oxygen isotopes (d18O) and Mg/Ca ratios at Orphan Knoll (cores HU91-045-093 and MD95-2024, 3488 m) in the Labrador Sea to reconstruct shallow subsurface summer conditions (temperature and seawater d18O). Lighter foraminiferal d18O values are recorded during the early Holocene between 11000 and 7000 years ago. Part of these lighter foraminiferal d18O values can be explained by increased calcification temperatures. Reconstructed seawater d18O values were, however, still on average 0.5 per mil lighter compared with those of recent times, confirming that fresher surface waters in the Labrador Sea were probably a limiting factor in Labrador Sea Water formation during the early Holocene.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: McCave, I Nick; Crowhurst, Simon J; Kuhn, Gerhard; Hillenbrand, Claus-Dieter; Meredith, Michael P (2014): Minimal change in Antarctic Circumpolar Current flow speed between the last glacial and Holocene. Nature Geoscience, 7, 113–116, https://doi.org/10.1038/ngeo2037
    Publication Date: 2023-05-12
    Description: The Antarctic Circumpolar Current is key to the mixing and ventilation of the world's oceans. This current flows from west to east between about 45° and 70° S connecting the Atlantic, Pacific and Indian oceans, and is driven by westerly winds and buoyancy forcing. High levels of productivity in the current regulate atmospheric CO2 concentrations. Reconstructions of the current during the last glacial period suggest that flow speeds were faster or similar to present, and it is uncertain whether the strength and position of the westerly winds changed. Here we reconstruct Antarctic Circumpolar Current bottom speeds through the constricting Drake Passage and Scotia Sea during the Last Glacial Maximum and Holocene based on the mean grain size of sortable silt from a suite of sediment cores. We find essentially no change in bottom flow speeds through the region, and, given that the momentum imparted by winds, and modulated by sea-ice cover, is balanced by the interaction of these flows with the seabed, this argues against substantial changes in wind stress. However, glacial flow speeds in the sea-ice zone south of 56° S were significantly slower than present, whereas flow in the north was faster, but not significantly so. We suggest that slower flow over the rough topography south of 56° S may have reduced diapycnal mixing in this region during the last glacial period, possibly reducing the diapycnal contribution to the Southern Ocean overturning circulation.
    Type: Dataset
    Format: application/zip, 12 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hall, Ian R; Boessenkool, K P; Barker, S; McCave, I Nick; Elderfield, Henry (2010): Surface and deep ocean coupling in the subpolar North Atlantic during the last 230 years. Paleoceanography, 25(2), https://doi.org/10.1029/2009PA001886
    Publication Date: 2023-02-12
    Description: The subpolar North Atlantic Ocean (SPNA) is of key importance for modulating the climate of NW Europe because of heat loss to the atmosphere from the North Atlantic Current. Although hydrographic properties of the surface SPNA vary on interannual to multidecadal timescales, hydrographic time series scarcely extend back beyond the 1950s. We present a 230 year long record of SPNA surface conditions reconstructed from a very high accumulation rate core that also registers changes in deep flow speed in the Iceland Basin. A lagged correlation is observed between the records of deep flow speed and stable oxygen isotopic composition of the surface SPNA (δ18Ow), with strongest correlation when the paleoflow speed record leads by 15–20 years. This offset may to some extent reflect size‐selective biological mixing of the sediment. Nonetheless, these records reveal a decadal‐scale coupling between surface and deep ocean variability over the past 230 years, possibly driven by the North Atlantic Oscillation, with implications for North Atlantic circulation and climate.
    Keywords: Age; AGE; BC; Box corer; CD159; Charles Darwin; DEPTH, sediment/rock; Gardar Drift; Globigerina bulloides, δ18O; RAPiD-21-12B; Sea surface temperature; Size fraction 250–315 μm; SST from Mg/Ca ratios
    Type: Dataset
    Format: text/tab-separated-values, 261 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...