GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 3605-3613 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Chemical vapor deposition (CVD) has been used to grow sulfur doped diamond films on undoped Si and single crystal HPHT diamond as substrates, using a 1% CH4/H2 gas mixture with various levels of H2S addition (100–5000 ppm), using both microwave (MW) plasma enhanced CVD and hot filament (HF) CVD. The two deposition techniques yield very different results. HFCVD produces diamond films containing only trace amounts of S (as analyzed by x-ray photoelectron spectroscopy), the film crystallinity is virtually unaffected by gas phase H2S concentration, and the films remain highly resistive. In contrast, MWCVD produces diamond films with S incorporated at levels of up to 0.2%, and the amount of S incorporation is directly proportional to the H2S concentration in the gas phase. Secondary electron microscopy observations show that the crystal quality of these films reduces with increasing S incorporation. Four point probe measurements gave the room temperature resistivities of these S-doped and MW grown films as ∼200 Ω cm, which makes them ∼3 times more conductive than undoped diamond grown under similar conditions. Molecular beam mass spectrometry has been used to measure simultaneously the concentrations of the dominant gas phase species present during growth, for H2S doping levels (1000–10 000 ppm in the gas phase) in 1% CH4/H2 mixtures, and for 1% CS2/H2 gas mixtures, for both MW and HF activation. CS2 and CS have both been detected in significant concentrations in all of the MW plasmas that yield S-doped diamond films, whereas CS was not detected in the gas phase during HF growth. This suggests that CS may be an important intermediary facilitating S incorporation into diamond. Furthermore, deposition of yellow S was observed on the cold chamber walls when using H2S concentrations 〉5000 ppm in the MW system, but very little S deposition was observed for the HF system under similar conditions. All of these results are rationalized by a model of the important gas phase chemical reactions, which recognizes the very different gas temperature profiles within the two different types of deposition reactor.© 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 2182-2184 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Field emission properties of undoped chemical vapor deposited diamond and diamondlike carbon films have been measured for a variety of different deposition conditions. The nature and appearance of the damage site after testing, together with the mathematical form of the observed current–voltage relations, are correlated with the conductivity of the film. This is consistent with a model for the overall current which is a combination of conduction mechanisms through the bulk of the film with Fowler–Nordheim tunneling. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 84 (1998), S. 1618-1625 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Field emission properties of undoped chemical vapor deposited diamond and diamond-like carbon films have been measured for a variety of different deposition conditions. The nature and appearance of the damage site after testing has been investigated with scanning electron microscopy and laser Raman mapping. These observations, together with the mathematical form of the observed current–voltage relations, are correlated with the conductivity of the film. The results are consistent with a model for the overall emission current that combines conduction mechanisms through the bulk of the film with Fowler–Nordheim tunneling. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 5219-5223 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The boundaries of the diamond deposition region in the C–H–O (Bachmann) atomic phase composition diagram have been reproduced successfully for 38 different C, H, and O containing gas mixtures using the CHEMKIN computer package, together with just two criteria—a minimum mole fraction of methyl radicals [CH3] and a limiting value of the [H]/[C2H2] ratio. The diamond growth/no-growth boundary coincides with the line along which the input mole fractions of C and O are equal. For every gas mixture studied, no-growth regions are found to coincide with a negligible (〈10−10) mole fraction of CH3 radicals, while for gas mixtures lying within the diamond growth region the CH3 mole fraction is ∼10−7. Each no-growth→diamond growth boundary is seen to be accompanied by a 2–3 order of magnitude step in CH3 mole fraction. The boundary between diamond and nondiamond growth is less clearly defined, but can be reproduced by assuming a critical, temperature dependent [H]/[C2H2] ratio (0.2, in the case that Tgas=2000 K) that reflects the crucial role of H atoms in the etching of nondiamond phases. The analysis allows prediction of the composition process window for good quality diamond growth for all stable input gas mixtures considered in this study. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Microwave plasma enhanced chemical vapor deposition has been used to grow diamond films at substrate temperatures down to 435 °C using CO2/CH4 gas mixtures. An Arrhenius plot of growth rate as a function of substrate temperature yields a value for the activation energy for the growth step of 28 kJ mol−1. This is lower than that measured previously for CH4/H2 systems and hints at a different gas-surface chemistry when using CH4/CO2 plasmas. Molecular beam mass spectrometry has been used to measure simultaneously the concentrations of the dominant gas phase species present during growth, for a wide range of plasma gas mixtures (0%–80% CH4, balance CO2). The CHEMKIN computer package has also been used to simulate the experimental results in order to gain insight into the major reactions occurring within the microwave plasma. The calculated trends for all species agree well with the experimental observations. Using these data, the model for the gas phase chemistry can be reduced to only four overall reactions. Our findings suggest that CH3 radicals are likely to be the key growth species when using CO2/CH4 plasmas and provide a qualitative explanation for the narrow concentration window for diamond growth. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...