GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 63 (1994), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Paralytic tremor (pt) is a sex-linked mutation in rabbit that affects myelination of the CNS. Myelin in the pt brains represents ∼30% of the normal levels. Previously we showed that the pt mutation affects primarily proteolipid protein (Plp) gene expression. In the present study we investigated the relative effect of the pt mutation on two distinctive Plp gene products, PLP- and DM-20-specific messenger RNAs. Our results showed that both PLP and DM-20 are affected and that the ratio DM-20/PLP was higher in pt rabbits than in age-matched controls. We sequenced normal rabbit PLP cDNA and characterized pt mutation at the DNA level. Rabbit PLP sequence, deduced from cDNA, differs from the human protein only at Thr198. Sequence analysis of the mutant cDNA revealed a transversion T → A in exon 2 of the Plp gene. This point mutation, which is placed at the end of the first potential transmembrane domain, results in a substitution of His36 by a glutamine. This transversion abolishes a restriction site that enabled us to screen a large number of animals and observe a perfect correlation between the pt allele and the abnormal phenotype.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Cultured murine oligodendrocytes elaborate extensive membrane sheets that, unlike multilamellar myelin in vivo, allow the study of interactions between myelin proteins and cytoskeletal elements. This article describes the events that occur due to the interaction of specific antibodies with their respective antigens, myelin/oligodendrocyte-specific protein (MOSP) and myelin/oligodendrocyte glycoprotein (MOG), which are expressed uniquely by oligodendrocytes. After antibody binding, surface anti-MOSP:MOSP complexes redistribute over those cytoplasmic microtubular veins that have 2′,3′-cyclic nucleotide 3′-phosphohydrolase colocalized along them. In contrast, surface anti-MOG-MOG complexes redistribute over internal myelin basic protein domains. Long-term anti-MOSP IgM exposure results in an apparent increase in number as well as thickness of microtubular structures in oligodendrocyte membrane sheets, whereas long-term anti-MOG exposure causes depolymerization of microtubular veins in membrane sheets. These data suggest that antibody binding to these two surface proteins elicits signals that have opposite effects on the cytoskeleton in oligodendroglial membrane sheets. Thus, it is possible that signals transduced via antibody binding may contribute to the pathogenesis of diseases affecting CNS myelin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The myelin/oligodendrocyte glycoprotein (MOG) is found exclusively in the CNS, where it is localized on the surface of myelin and oligodendrocyte cytoplasmic membranes. The monoclonal antibody 8-18C5 identifies MOG. Several studies have shown that anti-MOG antibodies can induce demyelination, thus inferring an important role in myelin stability. In this study, we demonstrate that MOG consists of two polypeptides, with molecular masses of 26 and 28 kDa. This doublet becomes a single 25-kDa band after deglycosylation with trifluoromethanesulfonic acid or peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase, indicating that there are no or few O-linked sugars and that the doublet band represents differential glycosylation. Partial trypsin cleavage, which also gave a doublet band of lower molecular weight, confirmed this idea. MOG was purified by polyacrylamide gel electrophoresis, followed by electroelution. Three N-terminal sequences of eight to 26 amino acids were obtained. By western blot analysis, no binding was found between MOG and cerebellar soluble lectin. MOG does not seem to belong to the signal-transducing GTP-binding proteins. Reduced MOG concentrations were observed in jimpy and quaking dysmyelinating mutant mice, giving further support to its localization in compact myelin of the CNS.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In a light and electron microscopic immunocytochemical study we have examined the distribution of myelin basic protein (MBP), 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP), and myelin/oligodendroglial glycoprotein (MOG) within CNS myelin sheaths and oligodendrocytes of adult Sprague–Dawley rats. Ultrastructural immunocytochemistry allowed quantitative analysis of antigen density in different myelin and oligodendrocyte zones: MBP was detectable in high density over the whole myelin sheath, but not in regions of loops, somata, or the oligodendrocyte plasma membrane. CNP reactivity was highest at the myelin/axon interface, and found in lower concentration over the outer lamellae of myelin sheaths, at the cytoplasmic face of oligodendrocyte membranes, and throughout the compact myelin. MOG was preferentially detected at the extracellular surface of myelin sheaths and oligodendrocytes and in only low amounts in the lamellae of compacted myelin and the myelin/axon border zone. Our studies, thus, indicate further the presence of different molecular domains in compact myelin, which may be functionally relevant for the integrity and maintenance of the myelin sheath.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The myelin-deficient (mld) mutation is an autosomal recessive mutation in the murine CNS exhibiting severe hypomyelination. The primary defect results in a drastic reduction of myelin basic protein synthesis caused by a duplication of the myelin basic protein gene with partial inversion of the upstream gene copy. The severe deficit of myelin basic protein is responsible for the absence of the major dense line but cannot explain the heterogeneity of myelin compaction found in mid. We have tested the hypothesis that the endogenous cerebellar soluble lectin (CSL) and/or its endogenous glycoprotein ligands could be involved in myelin abnormalities in the dysmyelinating mutant, mld. Immunocytochemical and immunoblotting techniques showed that the CSL level was not reduced significantly in the mld mutant. Furthermore, two ligands of CSL, the myelin-associated glycoprotein and an axonal glycoprotein, with a relative molecular mass of 31 kDa, were not decreased in level in the purified myelin fraction isolated from mld mice. In contrast, three minor glycoprotein ligands of CSL of relative molecular mass of 23, 18, and 16 kDa were greatly reduced in content. The reduced concentration of these low-molecular-mass glycoproteins in mld myelin suggests that they are constituents of compact myelin. Furthermore, the observation that CSL is specifically localized in vivo in regions where mld myelin is more compact and absent from regions devoid of myelin compaction may suggest that the endogenous CSL lectin, as well as its minor glycoprotein ligands, plays a role in the stabilization of the myelin sheath.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: If the importance of triiodothyronine (T3) on brain development including myelinogenesis has long been recognized, its mechanism of action at the gene level is still not fully elucidated. We studied the effect of T3 on the expression of myelin protein genes in aggregating brain cell cultures. T3 increases the concentrations of mRNA transcribed from the following four myelin protein genes: myelin basic protein (Mbp), myelin-associated glycoprotein (Mag), proteolipid protein (Plp), and 2′,3′-cyclic nucleotide 3′-phosphodiesterase (Cnp). T3 is not only a triggering signal for oligodendrocyte differentiation, but it has continuous stimulatory effects on myelin gene expression. Transcription in isolated nuclei experiments shows that T3 increases Mag and Cnp transcription rates. After inhibiting transcription with actinomycin D, we measured the half-lives of specific mRNAs. Our results show that T3 increases the stability of mRNA for myelin basic protein, and probably proteolipid protein. In vitro translation followed by myelin basic protein-specific immunoprecipitation showed a direct stimulatory effect of T3 on myelin basic protein mRNA translation. Moreover, this stimulation was higher when the mRNA was already stabilized in culture, indicating that stabilization is achieved through mRNA structural modifications. These results demonstrate the diverse and multiple mechanisms of T3 stimulation of myelin protein genes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: A monoclonal antibody (8–18C5) directed against myelin/oligodendrocyte glycoprotein (MOG) induced demyelination in aggregating brain cell cultures. With increasing doses of anti-MOG antibody in the presence of complement, myelin basic protein (MBP) concentrations decreased in a dose-related manner. A similar, albeit less pronounced, effect was observed on specific activity of 2′,3′-cyclic nucleotide 3′-phosphohydrolase. In the absence of complement, anti-MOG antibody did not induce detectable demyelination. In contrast to the effect of anti-MOG antibody and as expected, anti-MBP antibody did not demyelinate aggregating brain cell cultures in the presence of complement. These results provide additional support to the suggestion that MOG, a quantitatively minor myelin component located on the external side of the myelin membrane, is a good target antigen for antibody-induced demyelination. Indeed, they show that a purified anti-MOG antibody directed against a single epitope on the glycoprotein can produce demyelination, not only in vivo as previously shown, but also in cultures. Such an observation has not been made with polyclonal antisera raised against purified myelin proteins like MBP and proteolipid protein, the major protein components of the myelin membrane, or myelin-associated glycoprotein. These observations may have important implications regarding the possible role of anti-MOG antibodies in demyelinating diseases.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Wallerian degeneration of the rabbit optic nerve was investigated by the technique of retinal ablation which precludes edema, hemorrhage, or macrophage infiltration. After 8 days of degeneration, marked degradation of axons and some myelin abnormalities appeared in the optic nerve, optic chiasma, and optic tract. Myelin lesions were maximal 32 days after retinal destruction. The amount of material stained with a myelin dye decreased drastically between 32 and 90 days after the operation. Biochemical parameters gave the following sequence of events. The concentration of the major periodic acid-Schiff staining glycoproteins was decreased after 2 days, and 6 days later the presence of cholesterol esters was detected in the optic tissue. After 16 days of Wallerian degeneration, the specific activity of 2′,3′-cyclic nucleotide 3′-phospho-diesterase not associated with myelin decreased, indicating a possible dedifferentiation of oligodendrocytes. Degradation of myelin basic protein became significant at 32 days and the amount of myelin isolated decreased later. The loss of myelin basic protein coincided with a reduction of myelin periodicity as measured in purified fractions by electron microscopy. These results show that secondary myelin destruction in the absence of edema, hemorrhage, or macrophages is a very slow process, and in this situation myelin undergoes a selective and sequential loss of its constituents.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In PNS, the specific activity of 2′,3′-cyclic nucleotide 3′-phospho–diesterase (CNP) in myelin was not enriched over the starting homogenate. Nevertheless, most of the total activity was recovered in myelin. In myelin-deficient mutants, low CNP activities were measured in sciatic nerves. CNP specific activities were similar in myelinated and non-myelinated nerves but in non-nervous tissues, they were significantly lower than in nervous tissue. There was no indication for the presence of an isoenzyme of CNP in peripheral nerves. These results indicate that CNP is present in PNS myelin and preferentially localized in Schwann cell plasma membranes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 22 (1974), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— Proteins and glycoproteins in a myelin fraction isolated from Quaking mutant mice were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate and stained with Fast Green or with periodic acid-Schiff reagents. Double labelling experiments with [3H]fucose and [14C]fucose were also used to compare glycoproteins in myelin from the mutant mice with those from control mice. In the myelin fraction from the Quaking mice the basic proteins and proteolipid protein were decreased relative to the high molecular weight proteins. Some glycoproteins which are present in small amounts in myelin from normal mice were increased relative to the major glycoprotein in the myelin fraction of the Quaking mice. Furthermore, the major myelin-associated glycoprotein was shifted toward higher apparent molecular weight in comparison with controls of the same age or even with 9-day-old controls. The abnormal glycoproteins in the mutant myelin fraction could be a factor in the impairment of myelination.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...