GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: In the vast Low Nutrient Low-Chlorophyll (LNLC) Ocean, the vertical nutrient supply from the subsurface to the sunlit surface waters is low, and atmospheric contribution of nutrients may be one order of magnitude greater over short timescales. The short turnover time of atmospheric Fe and N supply (〈1 month for nitrate) further supports deposition being an important source of nutrients in LNLC regions. Yet, the extent to which atmospheric inputs are impacting biological activity and modifying the carbon balance in oligotrophic environments has not been constrained. Here, we quantify and compare the biogeochemical impacts of atmospheric deposition in LNLC regions using both a compilation of experimental data and model outputs. A metadata-analysis of recently conducted field and laboratory bioassay experiments reveals complex responses, and the overall impact is not a simple “fertilization effect of increasing phytoplankton biomass” as observed in HNLC regions. Although phytoplankton growth may be enhanced, increases in bacterial activity and respiration result in weakening of biological carbon sequestration. The application of models using climatological or time-averaged non-synoptic deposition rates produced responses that were generally much lower than observed in the bioassay experiments. We demonstrate that experimental data and model outputs show better agreement on short timescale (days to weeks) when strong synoptic pulse of aerosols deposition, similar in magnitude to those observed in the field and introduced in bioassay experiments, is superimposed over the mean atmospheric deposition fields. These results suggest that atmospheric impacts in LNLC regions have been underestimated by models, at least at daily to weekly timescales, as they typically overlook large synoptic variations in atmospheric deposition and associated nutrient and particle inputs. Inclusion of the large synoptic variability of atmospheric input, and improved representation and parameterization of key processes that respond to atmospheric deposition, is required to better constrain impacts in ocean biogeochemical models. This is critical for understanding and prediction of current and future functioning of LNLC regions and their contribution to the global carbon cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-23
    Description: In the vast Low Nutrient Low-Chlorophyll (LNLC) Ocean, the vertical nutrient supply from the subsurface to the sunlit surface waters is low, and atmospheric contribution of nutrients may be one order of magnitude greater over short timescales. The short turnover time of atmospheric Fe and N supply (〈1 month for nitrate) further supports deposition being an important source of nutrients in LNLC regions. Yet, the extent to which atmospheric inputs are impacting biological activity and modifying the carbon balance in oligotrophic environments has not been constrained. Here, we quantify and compare the biogeochemical impacts of atmospheric deposition in LNLC regions using both a compilation of experimental data and model outputs. A metadata-analysis of recently conducted field and laboratory bioassay experiments reveals complex responses, and the overall impact is not a simple “fertilization effect of increasing phytoplankton biomass” as observed in HNLC regions. Although phytoplankton growth may be enhanced, increases in bacterial activity and respiration result in weakening of biological carbon sequestration. The application of models using climatological or time-averaged non-synoptic deposition rates produced responses that were generally much lower than observed in the bioassay experiments. We demonstrate that experimental data and model outputs show better agreement on short timescale (days to weeks) when strong synoptic pulse of aerosols deposition, similar in magnitude to those observed in the field and introduced in bioassay experiments, is superimposed over the mean atmospheric deposition fields. These results suggest that atmospheric impacts in LNLC regions have been underestimated by models, at least at daily to weekly timescales, as they typically overlook large synoptic variations in atmospheric deposition and associated nutrient and particle inputs. Inclusion of the large synoptic variability of atmospheric input, and improved representation and parameterization of key processes that respond to atmospheric deposition, is required to better constrain impacts in ocean biogeochemical models. This is critical for understanding and prediction of current and future functioning of LNLC regions and their contribution to the global carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-02-20
    Description: Microbial activity is a fundamental component of oceanic nutrient cycles. Photosynthetic microbes, collectively termed phytoplankton, are responsible for the vast majority of primary production in marine waters. The availability of nutrients in the upper ocean frequently limits the activity and abundance of these organisms. Experimental data have revealed two broad regimes of phytoplankton nutrient limitation in the modern upper ocean. Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow. In contrast, iron often limits productivity where subsurface nutrient supply is enhanced, including within the main oceanic upwelling regions of the Southern Ocean and the eastern equatorial Pacific. Phosphorus, vitamins and micronutrients other than iron may also (co-)limit marine phytoplankton. The spatial patterns and importance of co-limitation, however, remain unclear. Variability in the stoichiometries of nutrient supply and biological demand are key determinants of oceanic nutrient limitation. Deciphering the mechanisms that underpin this variability, and the consequences for marine microbes, will be a challenge. But such knowledge will be crucial for accurately predicting the consequences of ongoing anthropogenic perturbations to oceanic nutrient biogeochemistry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-13
    Description: Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73) Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1) Tg C from cell counts and to 89 (43–150) Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr−1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N2 fixation rate upward and may result in significantly higher estimates for the global N2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future. The database is stored in PANGAEA (doi:10.1594/PANGAEA.774851).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-26
    Description: We used data collected at 〉 60 stations over a 10 yr period to build the carbon budget of the plankton community in the euphotic layer of the Eastern North Atlantic Subtropical Gyre (NASE). Autotrophic biomass exceeded microbial heterotrophic biomass by a factor of 1.7. Mean ( SE), integrated chlorophyll a concentration and net particulate primary production (PP) were 17 +/- 1 Mg m(2) and 271 +/- 29 mg C m(-2) d(-1), respectively. Protist grazing on phytoplankton represented 〉 90% of PP. Bacterial production (BP) was 17 +/- 3 mg C m(-2) d(-1). In vitro O-2-evolution experiments indicated that net community production was -65 +/- 16 mmolO(2) m(-2) d(-1), while community respiration (CR) averaged 124 +/- 13 mmolO(2) m(-2) d-1, equivalent to 1324 +/- 142 mg C m(-2) d(-1). However, the sum of the respiration rates by each microbial group, estimated from their biomass and metabolic rates, ranged from 402 to 848 Mg C m(-2) d-1. Therefore, CR could not be reconciled with the respiratory fluxes sustained by each microbial group. Comparison between estimated gross photosynthesis by phytoplankton (481 to 616 mg C m(-2) d-1) and the sum of respiration by each group suggests that the microbial community in the NASE province is close to metabolic balance, which would agree with the observed O-2 supersaturation in the euphotic layer. Taking into account the mean open-ocean values for PP, BP, CR and bacterial growth efficiency, we show that bacteria account for approximately 20% of CR. Our results suggest that the view that bacteria dominate carbon cycling in the unproductive ocean must be reconsidered, or else that in vitro incubations misrepresent the real metabolic rates of one or several microbial groups.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-08-01
    Description: A recent optimality-based model for phytoplankton growth and diazotrophy was applied at two stations located in the oligotrophic western and the ultra-oligotrophic eastern subtropical North Atlantic. Contrary to the common view that diazotrophy is favoured by nitrogen (N) depletion relative to the Redfield equivalent of phosphorus (P), we find that optimality-based diazotrophy could explain N fixation in both regions in spite of relatively high N:P supply ratios. This is possible because the availability of an additional source of N for diazotrophs makes them strong competitors for P under oligotrophic conditions. The best reproduction of observations, especially of net primary production, is only achieved with preferential remineralization of P relative to N and atmospheric deposition. In line with observations, a higher rate of nitrogen fixation is predicted for the eastern site, owing to a larger niche for diazotrophs resulting from stronger oligotrophy and lower N:P supply ratios due to weaker atmospheric N deposition. Because the competitive advantage of diazotrophs under nutrient starvation diminishes with increasing supply N:P ratio, the predicted increase of atmospheric N deposition due to anthropogenic activity could negatively affect N2 fixation in the Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-08-20
    Description: A recent optimality-based model for phytoplankton growth and diazotrophy was applied at two stations located in the oligotrophic western and the ultra-oligotrophic eastern subtropical North Atlantic. Contrary to the common view that diazotrophy is favoured by nitrogen (N) depletion relative to the Redfield equivalent of phosphorus (P), we find that optimality-based diazotrophy could explain N fixation in both regions in spite of relatively high N:P supply ratios. This is possible because the availability of an additional source of N for diazotrophs makes them strong competitors for P under oligotrophic conditions. The best reproduction of observations, especially of net primary production, is only achieved with preferential remineralization of P relative to N and atmospheric deposition. In line with observations, a higher rate of nitrogen fixation is predicted for the eastern site, owing to a larger niche for diazotrophs resulting from stronger oligotrophy and lower N:P supply ratios due to weaker atmospheric N deposition. Because the competitive advantage of diazotrophs under nutrient starvation diminishes with increasing supply N:P ratio, the predicted increase of atmospheric N deposition due to anthropogenic activity could negatively affect N 2 fixation in the Atlantic Ocean.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-12
    Description: Fernández, A., Graña, R., Mouriño-Carballido, B., Bode, A., Varela, M., Domínguez-Yanes, J. F., Escánez, J., de Armas, D., and Marañón, E. 2013. Community N 2 fixation and Trichodesmium spp. abundance along longitudinal gradients in the eastern subtropical North Atlantic. – ICES Journal of Marine Science, 70:223–231. We have determined planktonic community N 2 fixation, Trichodesmium abundance, the concentration and vertical diffusive flux of phosphate, and satellite-derived estimates of atmospheric concentration of dust along two longitudinal transects in the eastern subtropical North Atlantic during November 2007 and from April–May 2008. Trichodesmium abundance was particularly low (〈3 trichome l –1 ) during the spring 2008 cruise, when low sea surface temperatures were recorded and vertical stratification was less marked. However, community N 2 fixation was always measurable, albeit low compared with other regions of the tropical Atlantic. The average, vertically-integrated N 2 fixation rate was 1.20 ± 0.48 µmol N m –2 d –1 in autumn 2007 and 8.31 ± 3.31 µmol N m –2 d –1 in spring 2008. The comparison of these rates of diazotrophy with the observed Trichodesmium abundances suggests that other, presumably unicellular, diazotrophs must have contributed significantly to community N 2 fixation, at least during the spring 2008 cruise. Satellite data of atmospheric dust concentration suggested similar rates of atmospheric deposition during the two surveys. In contrast, vertical diffusive fluxes of phosphate were 5-fold higher in spring than in autumn (14.2 ± 12.1 µmol P m –2 d –1 and 2.8 ± 2.6 µmol P m –2 d –1 , respectively), which may have stimulated N 2 fixation. These findings agree with the growing view that N 2 fixation is a more widespread process than the distribution of Trichodesmium alone may suggest. Our data also suggest a role for phosphorus supply in controlling the local variability of diazotrophic activity in a region subject to relatively high atmospheric inputs of iron.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-03-08
    Description: Conventional methods for the estimation of marine phytoplankton diversity include the collection of a small volume of seawater which is analysed under the microscope. We sampled natural communities and also synthetic communities generated under a neutral community model configuration and demonstrate that traditional sampling methods underestimate the species richness of marine phytoplankton communities. In our model, a synthetic community represents an ensemble of individuals enclosed in a parcel of seawater wherein the dynamics of each population is controlled by demographic stochasticity and dispersal. By sampling these synthetic communities, we found that roughly 20–45% of the species is missed by conventional, small volume samples. Consistent with the simulations, field data showed that the number of species increases with sampling effort by up to ~1.5-fold, revealing that these microbial communities might be more diverse than previously estimated. We suggest that conventional sampling methods have limited our ability to delineate the patterns of marine phytoplankton diversity and identify the underlying mechanisms. Improved sampling methods are proposed to obtain more accurate estimates of marine phytoplankton diversity.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-11
    Description: The zonal (~15°W–40°W along 26°N–29°N) and meridional (~30°N–30°S along 28°W–29°W) variability of 15 N of suspended particles and zooplankton (〉40 µm) was studied to assess the influence of nitrogen fixation in the isotopic budget of the tropical and subtropical Atlantic ocean. Two cruises were conducted in October–November 2007 and April–May 2008 comprising a zonal and meridional transect each. In the region between 30°N and 15°N, the concurrently measured nitrogen fixation was insufficient to explain the consistent patch of suspended particles with 15 N 〈 2 and points to a significant contribution of atmospheric deposition of light nitrogen to the isotopic budget. The equatorial region (15°N–10°S) is subject to intense nitrogen fixation, which, according to a two-end-member mixing model, may explain 40–60% of the observed 15 N in suspended particles and 3–30% in zooplankton. In the South region between 10°S and 30°S, low values (〈4) were measured in suspended particles and zooplankton during 2008. The values of 15 N of suspended particles suggest that nitrogen fixation, which is usually low (〈10 µmol N m –2 day –1 ), may represent 50–60% of phytoplankton nitrogen in this region. Hence, diazotrophy in the South Atlantic may be more important than previously thought.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...