GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Solitons. ; Electronic books.
    Description / Table of Contents: This book introduces the main examples of topological solitons in classical field theories, discusses the forces between solitons, and surveys both static and dynamic multi-soliton solutions. It covers kinks in one dimension, lumps and vortices in two dimensions, monopoles and Skyrmions in three dimensions, and instantons in four dimensions.
    Type of Medium: Online Resource
    Pages: 1 online resource (507 pages)
    Edition: 1st ed.
    ISBN: 9780511211416
    Series Statement: Cambridge Monographs on Mathematical Physics Series
    DDC: 530.14
    Language: English
    Note: Cover -- Half-title -- Series-title -- Title -- Copyright -- Contents -- Preface -- 1 Introduction -- 1.1 Solitons as particles -- 1.2 A brief history of topological solitons -- 1.3 Bogomolny equations and moduli spaces -- 1.4 Soliton dynamics -- 1.5 Solitons and integrable systems -- 1.6 Solitons - experimental status -- 1.7 Outline of this book -- 2 Lagrangians and fields -- 2.1 Finite-dimensional systems -- 2.2 Symmetries and conservation laws -- 2.3 Field theory -- 2.4 Noether's theorem in field theory -- 2.5 Vacua and spontaneous symmetry breaking -- 2.6 Gauge theory -- 2.7 The Higgs mechanism -- 2.8 Gradient flow in field theory -- 3 Topology in field theory -- 3.1 Homotopy theory -- 3.2 Topological degree -- 3.3 Gauge fields as differential forms -- 3.4 Chern numbers of abelian gauge .elds -- 3.5 Chern numbers for non-abelian gauge fields -- 3.6 Chern-Simons forms -- 4 Solitons - general theory -- 4.1 Topology and solitons -- 4.2 Scaling arguments -- 4.3 Symmetry and reduction of dimension -- 4.4 Principle of symmetric criticality -- 4.5 Moduli spaces and soliton dynamics -- 5 Kinks -- 5.1 Bogomolny bounds and vacuum structure -- 5.2 Phi4 kinks -- 5.3 Sine-Gordon kinks -- 5.4 Generalizations -- 6 Lumps and rational maps -- 6.1 Lumps in the O(3) sigma model -- 6.2 Lumps on a sphere and symmetric maps -- 6.3 Stabilizing the lump -- 7 Vortices -- 7.1 Ginzburg-Landau energy functions -- 7.2 Topology in the global theory -- 7.3 Topology in the gauged theory -- 7.4 Vortex solutions -- 7.5 Forces between gauged vortices -- 7.6 Forces between vortices at large separation -- 7.7 Dynamics of gauged vortices -- 7.7.1 Second order dynamics -- 7.7.2 Gradient flow -- 7.7.3 First order dynamics -- 7.8 Vortices at critical coupling -- 7.9 Moduli space dynamics -- 7.10 The metric on MN -- 7.11 Two-vortex scattering. , 7.12 First order dynamics near critical coupling -- 7.13 Global vortex dynamics -- 7.14 Varying the geometry -- 7.14.1 Volume of moduli space -- 7.14.2 Toroidal geometry - the Abrikosov lattice -- 7.14.3 Vortices on the hyperbolic plane -- 7.15 Statistical mechanics of vortices -- 8 Monopoles -- 8.1 Dirac monopoles -- 8.2 Monopoles as solitons -- 8.3 Bogomolny-Prasad-Sommerfield monopoles -- 8.4 Dyons -- 8.5 The Nahm transform -- 8.6 Construction of monopoles from Nahm data -- 8.7 Spectral curves -- 8.8 Rational maps and monopoles -- 8.9 Alternative monopole methods -- 8.10 Monopole dynamics -- 8.11 Moduli spaces and geodesic motion -- 8.12 Well separated monopoles -- 8.13 SU(m) monopoles -- 8.14 Hyperbolic monopoles -- 9 Skyrmions -- 9.1 The Skyrme model -- 9.2 Hedgehogs -- 9.3 Asymptotic interactions -- 9.4 Low charge Skyrmions -- 9.5 The rational map ansatz -- 9.6 Higher charge Skyrmions -- 9.7 Lattices, crystals and shells -- 9.8 Skyrmion dynamics -- 9.9 Generalizations of the Skyrme model -- 9.10 Quantization of Skyrmions -- 9.11 The Skyrme-Faddeev model -- 10 Instantons -- 10.1 Self-dual Yang-Mills fields -- 10.2 The ADHM construction -- 10.3 Symmetric instantons -- 10.4 Skyrme fields from instantons -- 10.5 Monopoles as self-dual gauge fields -- 10.6 Higher rank gauge groups -- 11 Saddle points - sphalerons -- 11.1 Mountain passes -- 11.2 Sphalerons on a circle -- 11.3 The gauged kink -- 11.4 Monopole-antimonopole dipole -- 11.5 The electroweak sphaleron -- 11.6 Unstable solutions in other theories -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford :Oxford University Press, Incorporated,
    Keywords: Earth sciences--Miscellanea. ; Electronic books.
    Description / Table of Contents: The Physical World offers a grand vision of the essential unity of physics that will enable the reader to see the world through the eyes of a physicist and understand their thinking.
    Type of Medium: Online Resource
    Pages: 1 online resource (573 pages)
    Edition: 1st ed.
    ISBN: 9780192515650
    DDC: 530
    Language: English
    Note: Cover -- Preface -- Contents -- 0 Introduction -- 1 Fundamental Ideas -- 1.1 Variational Principles -- 1.1.1 Geometrical optics-reflection and refraction -- 1.1.2 The scope of variational principles -- 1.2 Euclidean Space and Time -- 1.3 Partial Derivatives -- 1.4 e, π and Gaussian Integrals -- 1.4.1 Radioactive decay -- 1.4.2 Waves and periodic functions -- 1.4.3 The Gaussian integral -- 1.4.4 The method of steepest descents -- 2 Motions of Bodies-Newton's Laws -- 2.1 Introduction -- 2.2 Newton's Laws of Motion -- 2.3 The Principle of Least Action -- 2.3.1 Motion in one dimension -- 2.3.2 A simple example and a simple method -- 2.3.3 Motion in a general potential and Newton's second law -- 2.3.4 The calculus of variations -- 2.3.5 The unimportance of the endpoints -- 2.4 The Motion of Several Bodies and Newton's Third Law -- 2.5 Motion of One Body in Three Dimensions -- 2.5.1 The harmonic oscillator -- 2.6 Central Forces -- 2.6.1 Circular orbits -- 2.7 The Attractive Inverse Square Law Force -- 2.8 G and the Mass of the Earth -- 2.9 Composite Bodies and Centre of Mass Motion -- 2.10 The Kepler 2-Body Problem -- 2.10.1 Binary stars -- 2.11 Lagrangian Points -- 2.12 Conservation of Energy -- 2.13 Friction and Dissipation -- 3 Fields-Maxwell's Equations -- 3.1 Fields -- 3.2 The Scalar Field Equation -- 3.3 Waves -- 3.4 Divergence and Curl -- 3.5 Electromagnetic Fields and Maxwell's Equations -- 3.5.1 What Maxwell's equations tell us -- 3.6 Electrostatic Fields -- 3.6.1 Charge and dipole moment -- 3.7 Electromagnetic Waves -- 3.8 Magnetostatics -- 3.9 Principle of Least Action for Electromagnetic Fields -- 3.10 The Lorentz Force -- 3.10.1 The Lorentz force from the principle of least action -- 3.11 Field Energy and Momentum -- 3.12 Dynamics of Particles and Fields -- 4 Special Relativity -- 4.1 Introduction -- 4.2 Lorentz Transformations. , 4.3 Relativistic Dynamics -- 4.3.1 Comparison of Newtonian and relativistic dynamics -- 4.3.2 E = mc2 -- 4.4 More on 4-Vectors -- 4.5 The Relativistic Character of Maxwell's Equations -- 4.6 Relativistic Principles of Least Action -- 5 Curved Space -- 5.1 Spherical Geometry -- 5.1.1 Geodesics -- 5.2 Non-Euclidean, Hyperbolic Geometry -- 5.3 Gaussian Curvature -- 5.4 Riemannian Geometry -- 5.4.1 Simple examples of metrics -- 5.5 Tensors -- 5.5.1 Covariant derivatives and Christoffel symbols -- 5.5.2 Christoffel symbols in plane polar coordinates -- 5.6 The Riemann Curvature Tensor -- 5.6.1 Riemann curvature in plane polar coordinates -- 5.6.2 Riemann curvature on a sphere -- 5.6.3 The 3-sphere -- 5.7 The Geodesic Equation -- 5.7.1 Geodesics in plane polar coordinates -- 5.7.2 The equation of geodesic deviation -- 5.8 Applications -- 6 General Relativity -- 6.1 The Equivalence Principle -- 6.2 The Newtonian Gravitational Field and Tidal Forces -- 6.3 Minkowski Space -- 6.4 Curved Spacetime Geometry -- 6.4.1 Weak gravitational fields -- 6.5 The Gravitational Field Equation -- 6.5.1 The energy-momentum tensor -- 6.5.2 The Einstein tensor and the Einstein equation -- 6.5.3 Determining the constant of proportionality -- 6.6 The Classic Tests of General Relativity -- 6.6.1 The perihelion advance of Mercury -- 6.6.2 The deflection of starlight -- 6.6.3 Clocks and gravitational redshift -- 6.7 The Schwarzschild Solution of the Einstein Equation -- 6.7.1 The Newtonian limit -- 6.8 Particle Motion in Schwarzschild Spacetime -- 6.9 Light Deflection in Schwarzschild Spacetime -- 6.10 The Interior Schwarzschild Solution -- 6.11 Black Holes -- 6.11.1 Eddington-Finkelstein coordinates -- 6.11.2 The Kerr metric -- 6.12 Gravitational Waves -- 6.12.1 The detection of gravitational waves -- 6.13 The Einstein-Hilbert Action -- 7 Quantum Mechanics -- 7.1 Introduction. , 7.2 Position and Momentum in Quantum Mechanics -- 7.3 The Schrödinger Equation -- 7.3.1 The free particle -- 7.3.2 The harmonic oscillator -- 7.4 Interpretation of Wavefunctions-Observables -- 7.4.1 Position probabilities -- 7.4.2 Other physical quantities-hermitian operators -- 7.4.3 Measurements of observables -- 7.5 Expectation Values -- 7.6 After a Measurement -- 7.7 Uncertainty Relations -- 7.8 Scattering and Tunnelling -- 7.9 Variational Principles in Quantum Mechanics -- 8 Quantum Mechanics in Three Dimensions -- 8.1 Introduction -- 8.2 Position and Momentum Operators -- 8.2.1 Particle in a box -- 8.3 Angular Momentum Operators -- 8.3.1 Eigenfunctions of l2 using Cartesian coordinates -- 8.4 The Schrödinger Equation with a Spherical Potential -- 8.4.1 The Coulomb potential -- 8.4.2 Spectroscopy -- 8.5 Spin -- 8.5.1 The Stern-Gerlach experiment -- 8.5.2 The Zeeman effect -- 8.5.3 Other spin representations -- 8.6 Spin 1/2 as a Quantum Paradigm -- 8.7 Quantum Mechanics of Several Identical Particles -- 8.7.1 The Fermi sphere -- 8.8 Bosons, Fermions and Spin -- 8.9 Return to the Action -- 9 Atoms, Molecules and Solids -- 9.1 Atoms -- 9.1.1 Atomic orbitals -- 9.1.2 Atomic shell model -- 9.2 Molecules -- 9.2.1 Covalent bonding -- 9.2.2 Polar bonds -- 9.2.3 Simple molecules -- 9.3 Organic Chemistry -- 9.3.1 Hückel theory-benzene -- 9.3.2 Polyenes -- 9.4 Solids -- 9.4.1 Covalent solids -- 9.5 Band Theory -- 9.5.1 Atomic lattices -- 9.5.2 Bloch's theorem -- 9.5.3 Bloch states in a finite crystal -- 9.5.4 The tight-binding model -- 9.5.5 The nearly free electron model -- 9.5.6 Ionic solids -- 9.5.7 Example of caesium chloride -- 9.5.8 Metals -- 9.5.9 Example of copper -- 9.6 Ferromagnetism -- 10 Thermodynamics -- 10.1 Introduction -- 10.1.1 What is heat? -- 10.1.2 The ideal gas law -- 10.1.3 The microscopic origin of heat -- 10.1.4 Iced tea. , 10.2 Entropy and Temperature -- 10.3 The First Law of Thermodynamics -- 10.3.1 New variables -- 10.4 Subsystems-The Gibbs Distribution -- 10.5 The Maxwell Velocity Distribution -- 10.6 Ideal Gases-Equation of State and Entropy -- 10.7 Non-Ideal Gases -- 10.8 The Chemical Potential -- 10.9 Fermion and Boson Gases at Low Temperature -- 10.9.1 The Fermi-Dirac function -- 10.9.2 Pressure of a degenerate electron gas -- 10.9.3 The heat capacity of an electron gas -- 10.9.4 The Bose-Einstein function -- 10.10 Black Body Radiation -- 10.11 Lasers -- 10.12 Magnetization in Spin Systems -- 10.13 A Little about Phase Transitions -- 10.14 Hawking Radiation -- 11 Nuclear Physics -- 11.1 The Birth of Nuclear Physics -- 11.2 The Strong Force -- 11.2.1 The nuclear potential -- 11.2.2 Nucleon pairing -- 11.2.3 The liquid drop model -- 11.3 The Nuclear Shell Model -- 11.3.1 The atomic shell analogy -- 11.3.2 The harmonic oscillator -- 11.3.3 Spin-orbit coupling -- 11.3.4 Beta decay -- 11.3.5 The Nilsson model -- 11.4 Alpha Decay -- 11.5 Fission -- 11.6 Fusion -- 11.6.1 Thermonuclear fusion -- 11.6.2 Controlled nuclear fusion -- 11.7 The Island of Stability -- 11.8 Exotic Nuclei -- 11.9 Pions, Yukawa Theory and QCD -- 12 Particle Physics -- 12.1 The Standard Model -- 12.1.1 Fundamental particles -- 12.2 Quantum Field Theory -- 12.2.1 Quantizing the electromagnetic field -- 12.2.2 The quantized scalar Klein-Gordon field -- 12.3 The Dirac Field -- 12.3.1 The Dirac equation -- 12.3.2 Quantizing the Dirac field-particles and antiparticles -- 12.4 Actions and Interactions -- 12.4.1 Quantum electrodynamics -- 12.4.2 Feynman diagrams -- 12.5 The Strong Force -- 12.5.1 Quarks -- 12.5.2 Confinement -- 12.6 QCD -- 12.6.1 Gluons -- 12.6.2 Lattice QCD -- 12.6.3 Heavy quarks and exotic hadrons -- 12.7 The Weak Force -- 12.7.1 Parity violation. , 12.8 The Theory of the Electroweak Force -- 12.8.1 The Higgs mechanism -- 12.8.2 Fermion masses -- 12.8.3 Discovering the W and Z bosons and the Higgs boson -- 12.8.4 Quark mixing -- 12.8.5 How many generations? -- 12.9 Neutrino Oscillations -- 13 Stars -- 13.1 The Sun -- 13.2 The Herzsprung-Russell Diagram -- 13.3 The Birth of Stars -- 13.3.1 Stellar composition -- 13.3.2 The virial theorem -- 13.3.3 Star formation -- 13.4 Stellar Structure -- 13.4.1 The structure functions -- 13.4.2 The mass-luminosity relationship -- 13.4.3 The density-temperature relationship -- 13.5 Nucleosynthesis -- 13.5.1 The proton-proton chain -- 13.5.2 The CNO cycle -- 13.5.3 The mass-radius relationship -- 13.5.4 The mass-temperature relationship -- 13.5.5 Minimum mass of main sequence stars -- 13.5.6 The temperature-luminosity relationship -- 13.6 Giant Stars Beyond the Main Sequence -- 13.6.1 The triple alpha process -- 13.7 Late Evolution -- 13.7.1 White dwarfs -- 13.7.2 Gravitational collapse of massive stars -- 13.8 Neutron Stars -- 13.8.1 Pulsars -- 13.9 Supernovae -- 13.9.1 Gamma-ray bursts -- 13.10 The Density-Temperature Diagram -- 14 Cosmology -- 14.1 Einstein's Universe -- 14.2 The Distance-Redshift Relationship -- 14.3 Friedmann-Robertson-Walker Cosmology -- 14.3.1 Einstein's equation and the FRW metric -- 14.3.2 The general FRW cosmological solutions -- 14.4 Cosmological Redshift -- 14.5 Newtonian Interpretation of the FRW Cosmology -- 14.6 The Big Bang -- 14.6.1 The age of the universe -- 14.7 Dark Matter -- 14.8 The Cosmic Microwave Background -- 14.8.1 Precision measurements of the CMB -- 14.9 The Cosmological Constant -- 14.10 Galaxy Formation -- 14.11 The Inflationary Universe -- 14.11.1 Particle horizons -- 14.11.2 Inflation -- 15 Frontiers of Physics -- 15.1 The Interpretation of Quantum Mechanics -- 15.1.1 Schrödinger's cat and Wigner's friend. , 15.1.2 The many-worlds interpretation.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...