GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2016-09-18
    Description: Two interesting aspects of cell lines grown in 3D conditions are their distinct morphology and production of extracellular matrix (ECM). Also, it is known that 3D aggregates have different susceptibilities to damage-inducing agents compared to their 2D monolayer counterparts. We describe the effect of ECM on 3D aggregate morphology, the effect of cisplatin, bleomycin and UV on the 3D aggregates and 2D monolayers of the BMG-1 cell line. We also present a rapid method for analyzing cytotoxicity and anti-proliferative effects of 3D aggregates in 96-well plates. We utilized a single-step protocol using the dye resazurin. BMG-1 cells formed floating aggregates on 1% agarose hydrogels. The extent of ECM formed by them was dependent on number of cells seeded irrespective of the seeding density, which in turn directed the 3D aggregates compactness. The 3D aggregates were less susceptible to cisplatin and UV-induced cytotoxicity compared to 2D counterparts. The IC 50 value of cisplatin was elevated at 210 µg/ml for the aggregates compared to 170µg/ml for the monolayers. Exposure to UV for 10, 20 and 30 minutes gave inhibition values of 2.98%, 8%, 22.99% and 31.8% for the aggregates as compared to 3.06%, 7.5%, 39.4% and 46.7% for the monolayers. While bleomycin-induced effects were unapparent when analyzed by vital staining for the doses used, the rapid, single-step method in 96-well plates was able to provide a dose-response for cytotoxicity and anti-proliferative effects. Also, comparative analysis of results obtained from vital staining and the single-step method demonstrates the reliability of the assay described. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-29
    Description: Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilized with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilized for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the “absolute in vitro ” and “true in vivo ”. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...