GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Grundwasser ; Reinigung ; Bioremediation
    Type of Medium: Online Resource
    Pages: Online-Ressource (45 S., 2,00 MB) , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 03X0085C. - Verbund-Nr. 01075402. - Engl. Berichtsbl. u.d.T.: NanoSan - nanotechnological remediation strategies , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Systemvoraussetzungen: Acrobat reader. , Zsfassungen in dt. u. engl. Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 38 (2001), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Addition of straw to anoxic rice field soil stimulates production of CH4, an important greenhouse gas. The archaeal community colonizing rice straw was investigated by molecular methods targeting the small subunit ribosomal RNA gene. Cloning and sequencing of 60 clones detected predominantly relatives of Methanobacterium spp. (38 clones) and Methanosarcina spp. (16 clones). Terminal restriction fragment length polymorphism (T-RFLP) analysis confirmed the dominance of Methanobacteriaceae and Methanosarcinaceae, and in addition showed restriction fragments characteristic for Rice cluster I (RC-I) methanogens. A new oligonucleotide probe specific for RC-I was designed. Quantitative slot blot hybridization of extracted rRNA with this probe indicated the presence of an active population of RC-I methanogens. Other methanogenic groups (e.g. Methanomicrobiaceae, Methanosaetaceae), although present and active in soil, could not be conclusively detected on rice straw. The methanogenic community pattern on straw, as revealed by T-RFLP and quantitative rRNA probing, was fairly constant with incubation time (8–57 days), but the total activity of methanogenic Archaea almost doubled. Our results indicate that the methanogens colonizing rice straw are less diverse than those inhabiting the soil.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The methane production potential of rice soils, which are situated in different geographical regions, shows inherent variations and is catalyzed by archaeal methanogens. We therefore investigated the archaeal community structure in 11 rice field soils which represent a range of climatic conditions (temperate to subtropical zones) and soil properties. Retrieval of environmental partial SSU rDNA sequences from the rice soils of Shenyang (China) and Gapan (The Philippines) showed that the communities were different from each other. However, despite the differences in soil properties and geographical region the sequences clustered in similar phylogenetic groups to those obtained earlier from rice fields of Vercelli (Italy). The archaeal community structure in the other rice field soils was compared using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting the SSU rRNA gene and the methyl-coenzyme M reductase α-subunit gene (mcrA). The relative abundance of each terminal restriction fragment (T-RF) was determined by fluorescence peak area integration. The 182-bp SSU rDNA T-RF (representing members of Methanosarcinaceae and rice cluster (RC) VI) was dominant (40–80% contribution) in Chinese soils (Zhenjiang, Changchun, Jurong, Beiyuan, Shenyang) and the Philippine soil of Gapan. The other Philippine soils (Luisiana, Guangzhou, Pila) and the Italian soils (Vercelli, Pavia) showed a dominant 389-bp T-RF (35–40% contribution), representing mainly the novel methanogenic RC-I. All the other T-RF (80, 88, 280, 375 and 〉800 bp) contributed 〈20%. Prolonged anoxic incubation (30–200 days) of the air-dried soils resulted in the production of CH4, which was in some soils preceded by a characteristic halt phase. T-RFLP analysis revealed that the soils with a methanogenic halt phase also showed dramatic archaeal population dynamics which were related to the length of the halt phase. Our results show that the archaeal communities in rice field soils of different geographical origin are highly related, but nevertheless exhibit individual patterns and dynamics, thus providing evidence for the active participation of the community members in energy and carbon flow.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-04
    Description: Most natural environments are characterized by frequent changes of their abiotic conditions. Microorganisms can respond to such changes by switching their physiological state between activity and dormancy allowing them to endure periods of unfavorable abiotic conditions. As a consequence, the competitiveness of microbial species is not simply determined by their growth performance under favorable conditions but also by their ability and readiness to respond to periods of unfavorable environmental conditions. The present study investigates the relevance of factors controlling the abundance and activity of individual bacterial species competing for an intermittently supplied substrate. For this purpose, numerical experiments were performed addressing the response of microbial systems to regularly applied feeding pulses. Simulation results show that community dynamics may exhibit a non-trivial link to the frequency of the external constraints and that for a certain combination of these environmental conditions coexistence of species is possible. The ecological implication of our results is that even non-dominant, neglected species can have a strong influence on realized species composition of dominant key species, due to their invisible presence enable the coexistence between important key species and by this affecting provided function of the system.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl) succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O-2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and naphthalene), W-cofactor-containing enzymes for reductive dearomatization of benzoyl-CoA (class II benzoyl-CoA reductase) in obligate anaerobes and addition of water to acetylene, fermentative formation of cyclohexanecarboxylate from benzoate, and methanogenic degradation of hydrocarbons.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...