GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Type of Medium: Book
    Series Statement: Manuscript report
    Language: Undetermined
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-15
    Description: As a part of the Scientific Committee on Oceanographic Research (SCOR) Working Group #160 “Analyzing ocean turbulence observations to quantify mixing” (ATOMIX), we have developed recommendations on best practices for estimating the rate of dissipation of kinetic energy, ε, from measurements of turbulence shear using shear probes. The recommendations provided here are platform-independent and cover the conceivable range of dissipation rates in the ocean, seas, and other natural waters. They are applicable to commonly deployed platforms that include vertical profilers, fixed and moored instruments, towed profilers, submarines, self-propelled ocean gliders, and other autonomous underwater vehicles. The procedure for preparing the shear data for spectral estimation is discussed in detail, as are the quality control metrics that should accompany each estimate of ε. The methods are illustrated using a high-quality ‘benchmark’ dataset, while potential pitfalls are demonstrated with a second dataset containing common faults.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2004. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 514 (2004): 107-119, doi:10.1017/S0022112004000126.
    Description: While acoustic scatter from oceanic turbulence is sensitive to temperature–salinity covariations, there are unfortunately no published measurements of the turbulent temperature–salinity co-spectrum. Several models have been proposed for the form of the co-spectrum of two scalars in turbulence, but they all produce unsatisfactory results when applied to the turbulent scattering equations (either predicting negative scattering cross-sections in some regimes or predicting implausible levels of correlation between temperature and salinity at some scales). A new model is proposed and shown to give physically plausible scattering predictions in all density regimes. High-frequency acoustic data illustrate the importance of the co-spectrum for acoustic scattering, but were collected in a density regime where there is little difference between the co-spectrum models.
    Description: This work was supported by NSERC and by ONR under grant #N00014-93-1-0362.
    Keywords: Oceanic turbulence ; Co-spectrum ; Temperature–salinity covariations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 474199 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...