GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Optical review 6 (1999), S. 100-103 
    ISSN: 1349-9432
    Keywords: laser diode ; interferometry ; injection current modulation ; fringe locking
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A fringe locking phenomenon in a two beam interferometer using a semiconductor laser subject to optical feedback was, whose injection current is modulated. When a path difference of the interferometer is sufficient, fringes taken by a charge coupled device camera are seen to be stationary and the rms fluctuations of fringe phase is reduced to as low as 0.2ϖ radians from more than 8ϖ radians without the optical feedback. The rms phase fluctuation is independent of frequency and amplitude of the current modulation. The fringe locking has also been observed in the presence of both injection current modulation and piezoelectric transducer mirror vibration.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1349-9432
    Keywords: laser diode ; interferometry ; injection current modulation ; fringe locking
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We have found that the fringes in a laser diode interferometer can be locked even in the presence of mirror vibration and injection current modulation. A theoretical analysis explains the fringe locking phenomenon. The dependence of wavelength change on both PZT (piezoelectric transducer) mirror vibration and the injection current variation are calculated using a model of coupled resonators consisting of the laser cavity and the interferometer. The fringe phase change caused by the vibration and modulation of the current is derived from this model, and was proven to be suppressed within much less than 2ϖ in excess of an integer multiple of 2ϖ.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): D05313, doi:10.1029/2005JD006198.
    Description: We have estimated the emission of carbon (C) and carbon-containing trace gases including CO2, CO, CH4, and NMHC (nonmethane hydrocarbons) from forest fires in China for the time period from 1950 to 2000 by using a combination of remote sensing, forest fire inventory, and terrestrial ecosystem modeling. Our results suggest that mean annual carbon emission from forest fires in China is about 11.31 Tg per year, ranging from a minimum level of 8.55 Tg per year to a maximum level of 13.9 Tg per year. This amount of carbon emission is resulted from the atmospheric emissions of four trace gases as follows: (1) 40.66 Tg CO2 with a range from 29.21 to 47.53 Tg, (2) 2.71 Tg CO with a range from 1.48 to 4.30 Tg, (3) 0.112 Tg CH4 with a range from 0.06 to 0.2 Tg, and (4) 0.113 Tg NMHC with a range from 0.05 to 0.19 Tg. Our study indicates that fire-induced carbon emissions show substantial interannual and decadal variations before 1980 but have remained relatively low and stable since 1980 because of the application of fire suppression. Large spatial variation in fire-induced carbon emissions exists due to the spatial variability of climate, forest types, and fire regimes.
    Description: This work has been supported by NASA Interdisciplinary Science Program (NNG04GM39C), China’s Ministry of Science and Technology (MOST) 973 Program (2002CB412500), Chinese Academy of Sciences ODS Program, and NSFC International Cooperative Program (40128005).
    Keywords: Biomass burning ; Carbon emission ; China ; Forest fire ; Trace gases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): G02011, doi:10.1029/2010JG001393.
    Description: China's terrestrial ecosystems have been recognized as an atmospheric CO2 sink; however, it is uncertain whether this sink can alleviate global warming given the fluxes of CH4 and N2O. In this study, we used a process-based ecosystem model driven by multiple environmental factors to examine the net warming potential resulting from net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere during 1961–2005. In the past 45 years, China's terrestrial ecosystems were found to sequestrate CO2 at a rate of 179.3 Tg C yr−1 with a 95% confidence range of (62.0 Tg C yr−1, 264.9 Tg C yr−1) while emitting CH4 and N2O at rates of 8.3 Tg C yr−1 with a 95% confidence range of (3.3 Tg C yr−1, 12.4 Tg C yr−1) and 0.6 Tg N yr−1 with a 95% confidence range of (0.2 Tg N yr−1, 1.1 Tg N yr−1), respectively. When translated into global warming potential, it is highly possible that China's terrestrial ecosystems mitigated global climate warming at a rate of 96.9 Tg CO2eq yr−1 (1 Tg = 1012 g), substantially varying from a source of 766.8 Tg CO2eq yr−1 in 1997 to a sink of 705.2 Tg CO2eq yr−1 in 2002. The southeast and northeast of China slightly contributed to global climate warming; while the northwest, north, and southwest of China imposed cooling effects on the climate system. Paddy land, followed by natural wetland and dry cropland, was the largest contributor to national warming potential; forest, followed by woodland and grassland, played the most significant role in alleviating climate warming. Our simulated results indicate that CH4 and N2O emissions offset approximately 84.8% of terrestrial CO2 sink in China during 1961–2005. This study suggests that the relieving effects of China's terrestrial ecosystems on climate warming through sequestering CO2 might be gradually offset by increasing N2O emission, in combination with CH4 emission.
    Description: This study has been supported by NASA LCLUC Program (NNX08AL73G_S01) , NASA IDS Program (NNG04GM39C), and China’s Ministry of Science and Technology (MOST) 973 Program (2002CB412500).
    Keywords: Carbon dioxide ; China ; Global warming potential ; Methane ; Nitrous oxide
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © IOP Publishing, 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 7 (2012): 044020, doi:10.1088/1748-9326/7/4/044020.
    Description: Chemical nitrogen (N) fertilizer has long been used to help meet the increasing food demands in China, the top N fertilizer consumer in the world. Growing concerns have been raised on the impacts of N fertilizer uses on food security and climate change, which is lack of quantification. Here we use a carbon–nitrogen (C–N) coupled ecosystem model, to quantify the food benefit and climate consequence of agronomic N addition in China over the six decades from 1949 to 2008. Results show that N fertilizer-induced crop yield and soil C sequestration had reached their peaks, while nitrous oxide (N2O) emission continued rising as N was added. Since the early 2000s, stimulation of excessive N fertilizer uses to global climate warming through N2O emission was estimated to outweigh their climate benefit in increasing CO2 uptake. The net warming effect of N fertilizer uses, mainly centered in the North China Plain and the middle and lower reaches of Yangtze River Basin, with N2O emission completely counteracting or even exceeding, by more than a factor of 2, the CO2 sink. If we reduced the current N fertilizer level by 60% in 'over-fertilized' areas, N2O emission would substantially decrease without significantly influencing crop yield and soil C sequestration.
    Description: This study has been supported by NASA IDS Program (NNG04GM39C), NASA LCLUC Program (NNX08AL73G), and the National Basic Research Program of China (2010CB950900) and (2010CB950604).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 32 (2005): L02405, doi:10.1029/2004GL021649.
    Description: Land-cover changes in China are being powered by demand for food for its growing population and by the nation's transition from a largely rural society to one in which more than half of its people are expected to live in cities within two decades. Here we use an analysis of remotely sensed data gathered between 1990 and 2000, to map the magnitude and pattern of changes such as the conversion of grasslands and forests to croplands and the loss of croplands to urban expansion. With high-resolution (30 m) imagery from Landsat TM for the entire country, we show that between 1990 and 2000 the cropland area increased by 2.99 million hectares and urban areas increased by 0.82 million hectares. In northern China, large areas of woodlands, grasslands and wetlands were converted to croplands, while in southern China large areas of croplands were converted to urban areas. The land-cover products presented here give the Chinese government and international community, for the first time, an unambiguous understanding of the degree to which the nation's landscape is being altered. Documentation of these changes in a reliable and spatially explicit way forms the foundation for management of China's environment over the coming decades.
    Description: This work has been supported by the Key Project of National Science Foundation of China (90202002), Ministry of Science and Technology (MOST) 973 Program (2002CB412500), the Key Knowledge Innovation Project of the Chinese Academy of Sciences K2CX2-308), NASA Interdisciplinary Science Program (NNG04GM39C), National Science Foundation of China (40128005).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB1007, doi:10.1029/2010GB003838.
    Description: The magnitude, spatial, and temporal patterns of the terrestrial carbon sink and the underlying mechanisms remain uncertain and need to be investigated. China is important in determining the global carbon balance in terms of both carbon emission and carbon uptake. Of particular importance to climate-change policy and carbon management is the ability to evaluate the relative contributions of multiple environmental factors to net carbon source and sink in China's terrestrial ecosystems. Here the effects of multiple environmental factors (climate, atmospheric CO2, ozone pollution, nitrogen deposition, nitrogen fertilizer application, and land cover/land use change) on net carbon balance in terrestrial ecosystems of China for the period 1961–2005 were modeled with newly developed, detailed historical information of these changes. For this period, results from two models indicated a mean land sink of 0.21 Pg C per year, with a multimodel range from 0.18 to 0.24 Pg C per year. The models' results are consistent with field observations and national inventory data and provide insights into the biogeochemical mechanisms responsible for the carbon sink in China's land ecosystems. In the simulations, nitrogen deposition and fertilizer applications together accounted for 61 percent of the net carbon storage in China's land ecosystems in recent decades, with atmospheric CO2 increases and land use also functioning to stimulate carbon storage. The size of the modeled carbon sink over the period 1961–2005 was reduced by both ozone pollution and climate change. The modeled carbon sink in response to per unit nitrogen deposition shows a leveling off or a decline in some areas in recent years, although the nitrogen input levels have continued to increase.
    Description: This study has been supported by NASA IDS Program (NNG04GM39C), NASA LCLUC Pr o g ram (NNX08AL73G_S01), and China’s Ministry of Science and Technology (MOST) 973 Program (2002CB412500).
    Keywords: China ; Terrestrial carbon sink ; Ecosystem model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-03-07
    Print ISSN: 1687-5591
    Electronic ISSN: 1687-5605
    Topics: Computer Science , Technology
    Published by Hindawi
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-27
    Description: Background: Double flower domestication is of great value in ornamental plants and presents an excellent system to study the mechanism of morphological alterations by human selection. The classic ABC model provides a genetic framework underlying the control of floral organ identity and organogenesis from which key regulators have been identified and evaluated in many plant species. Recent molecular studies have underscored the importance of C-class homeotic genes, whose functional attenuation contributed to the floral diversity in various species. Cultivated Camellia japonica L. possesses several types of double flowers, however the molecular mechanism underlying their floral morphological diversification remains unclear. Results: In this study, we cloned the C-class orthologous gene CjAG in C. japonica. We analyzed the expression patterns of CjAG in wild C. japonica, and performed ectopic expression in Arabidopsis. These results revealed that CjAG shared conserved C-class function that controls stamen and carpel development. Further we analyzed the expression pattern of CjAG in two different C. japonica double-flower varieties, `Shibaxueshi? and `Jinpanlizhi?, and showed that expression of CjAG was highly contracted in `Shibaxueshi? but expanded in inner petals of `Jinpanlizhi?. Moreover, detailed expression analyses of B- and C-class genes have uncovered differential patterns of B-class genes in the inner organs of `Jinpanlizhi?. Conclusions: These results demonstrated that the contraction and expansion of CjAG expression were associated with the formation of different types of double flowers. Our studies have manifested two different trajectories of double flower domestication regarding the C-class gene expression in C. japonica.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-03-13
    Description: A large decrease in the land surface albedo of the Loess Plateau was observed from 2000 to 2010, as measured using satellite imagery. In particular, ecological restoration program regions experienced a decrease in peak season land surface albedo exceeding 0.05. In this study, we examined the spatial and temporal patterns of variation during the peak season albedo in the Loess Plateau and analyzed its relationships with changes of anthropogenic and natural factors at the pixel level. Our analysis revealed that increasing grassland coverage due to returning rangeland to grassland could lead to a maximum albedo decrease of 0.030 in peak season. This result highlighted the human-induced land use change in driving the decreasing albedo on an annual scale. There was no significant correlation between precipitation change and albedo reduction. Precipitation could influence the spatial pattern of albedo in drought years by influencing the natural vegetation water requirement. However, the role of precipitation was not obvious in the ecological restoration program regions. This article demonstrates the substantial role that land use change could play in regional-scale albedo change and climate. Finally, some implications for the radiative forcing of land use change are discussed.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...