GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (286 pages)
    Edition: 1st ed.
    ISBN: 9783662484470
    DDC: 681.111
    Language: English
    Note: Intro -- Preface -- Contents -- 1 A Sketch of Ancient Western Astronomy -- 1.1 Historical Development of Western Astronomy -- 1.1.1 Egyptian Civilization -- 1.1.2 Mesopotamian Civilization -- 1.1.3 Aegean Civilization -- 1.1.3.1 Minoan and Mycenaean Civilization -- 1.1.3.2 Dark Age -- 1.1.3.3 Classical Age -- 1.1.3.4 Ionia School -- 1.1.3.5 Pythagoras School -- 1.1.3.6 Plato School -- 1.1.3.7 Hellenistic Age -- 1.2 Astronomical Cycles and Calendars -- 1.2.1 Egyptian Calendar -- 1.2.2 Metonic Cycle -- 1.2.3 Callippic Cycle -- 1.2.4 Saros Cycle -- 1.2.5 Exeligmos Cycle -- 1.3 Ancient Astronomical Theories -- 1.3.1 Solar Theory -- 1.3.2 Lunar Theory -- 1.3.3 Planetary Theory -- 1.4 Remarks -- References -- 2 Ancient Astronomical Instruments -- 2.1 Classifications Based on Functions -- 2.1.1 Observation Application -- 2.1.2 Measuring Position and Distance Application -- 2.1.3 Measuring Time Application -- 2.1.4 Computing Application -- 2.1.5 Demonstration Application -- 2.2 Jacob's Staff -- 2.3 Astrolabe -- 2.4 Sundial -- 2.5 Calendrical Device -- 2.5.1 Astrolabe with Calendrical Gearing -- 2.5.2 Sundial with Calendrical Gearing -- 2.6 Planetarium, Astrarium, and Astronomical Clock -- 2.7 Orrery -- 2.8 Comparisons of Astronomical Instruments -- 2.9 Remarks -- References -- 3 Amazing Discovery of Archaeology -- 3.1 Origination and Process of the Discovery -- 3.1.1 Historical Background of Salvage -- 3.1.2 Story of the Antikythera Finding -- 3.2 Introduction of the Excavations -- 3.3 Known Antikythera Astronomical Device -- 3.3.1 Front Plate -- 3.3.2 Back Plate -- 3.3.3 Display Pointers -- 3.3.3.1 Axial Rotation -- 3.3.3.2 Radial Rotation -- 3.3.3.3 Axial Rotation and Radial Sliding -- 3.3.4 Interior Structure of Mechanisms -- 3.4 Relative Historical Background and Records -- 3.5 Remarks -- References -- 4 Modern Reconstruction Research. , 4.1 Early Mentions -- 4.2 Reconstruction Work by Price -- 4.3 Reconstruction Work by Edmund and Morgan -- 4.4 Reconstruction Work by Wright -- 4.5 Reconstruction Work by Freeth et al. -- 4.6 Others' Research After AD 2000 -- References -- 5 Reconstruction Design Methodology -- 5.1 Reconstruction Research -- 5.2 Reconstruction Design Methodology -- 5.2.1 Design Specifications -- 5.2.2 Generalized Chains -- 5.2.3 Specialized Chains -- 5.2.4 Reconstruction Designs -- 5.3 Historical Archives of Antikythera Device -- 5.3.1 Detected Evidence -- 5.3.2 Decoded Information -- 5.3.3 Ancient Astronomy -- 5.3.4 Ancient Astronomical Instruments -- 5.3.5 Modern Kinematic and Mechanism Analyses -- 5.4 Reconstruction Research by Yan and Lin -- 5.4.1 Concepts of Mechanical Designs -- 5.4.1.1 Mechanical Members -- Link or Kinematic Link (KL) -- Gear (KG) -- 5.4.1.2 Joints -- Revolute Joint (JR) -- Pin-in-Slot Joint (JA) -- Gear Joint () -- 5.4.1.3 Degrees of Freedom -- 5.4.1.4 Topological Structure -- 5.4.2 Date Subsystem -- 5.4.3 Eclipse Prediction Subsystem -- 5.4.4 Calendrical Subsystem -- 5.4.5 Lunar Subsystem -- 5.4.6 Solar Subsystem -- 5.4.7 Planetary Subsystem -- 5.4.8 Summary -- 5.5 Comparisons Among Different Reconstruction Researches -- 5.5.1 Comparison with Price's Design -- 5.5.2 Comparison with Edmund and Morgan's Design -- 5.5.3 Comparison with Wright's Design -- 5.5.4 Comparison with the Design of Freeth et al. -- 5.6 Remarks -- References -- 6 Reconstruction Designs of the Calendrical Subsystem -- 6.1 Historical Archives of the Calendrical Subsystem -- 6.2 Design Process of the Calendrical Subsystem -- 6.2.1 Design Specifications -- 6.2.2 Generalized Chains -- 6.2.3 Specialized Chains -- 6.2.3.1 Ground Link (Member 1) -- 6.2.3.2 Callippic Cycle Link (Member 5) -- 6.2.3.3 Olympiad Cycle Link (Member 4) -- 6.2.3.4 Input Link (Member 2). , 6.2.3.5 Metonic Cycle Link (Member 3) -- 6.2.3.6 Transmission Link (Link 6) -- 6.2.4 Reconstruction Designs -- 6.2.4.1 Tooth Calculation of the Feasible Designs -- Feasible Reconstruction Design of Fig. a -- Feasible Reconstruction Design of Fig. b -- 6.3 Remarks -- References -- 7 Reconstruction Designs of the Lunar Subsystem -- 7.1 Historical Archives of the Lunar Subsystem -- 7.1.1 Kinematic Analysis of the Lunar Theory -- 7.1.2 Kinematic Analysis of Epicyclic Gear Trains -- 7.2 Design Process of the Lunar Subsystem -- 7.2.1 Design Specifications -- 7.2.2 Generalized Chains -- 7.2.3 Specialized Chains -- 7.2.3.1 Pin-in-Slot Device (Members 3, 5, and 6, and Joint JA) -- 7.2.3.2 Anomalistic Link (Member 4) -- 7.2.3.3 Ground Link (Member 1) -- 7.2.3.4 Sidereal Link and Output Link (Members 2 and 7) -- 7.2.3.5 Revolute Joints (Joints JR) -- 7.2.3.6 Gear Joints (JG) -- 7.2.4 Reconstruction Designs -- 7.3 Remarks -- References -- 8 Reconstruction Designs of the Solar Subsystem -- 8.1 Historical Archives of the Solar Subsystem -- 8.1.1 Possible Arrangements of the Driving Power -- 8.1.2 Kinematic Analysis of the Solar Theory -- 8.1.3 Eccentric System of the Solar Motion -- 8.1.4 Epicyclic System of the Solar Motion -- 8.1.4.1 Four-Bar Mechanism with 5 Joints -- 8.1.4.2 Five-Bar Mechanism with 7 Joints -- 8.2 Design Process of the Solar Subsystem -- 8.2.1 Type 1 Design of the Solar Subsystem -- 8.2.2 Type 2 Design of the Solar Subsystem -- 8.2.3 Type 3 Design of the Solar Subsystem -- 8.2.3.1 Ground Link (Member 1) -- 8.2.3.2 Input Link (Member 2) -- 8.2.3.3 Output Link (Member 3) -- 8.2.3.4 Transmission Links (Members 4 and 5) -- 8.2.3.5 Pin-in-Slot Joint (Joint JA) -- 8.2.3.6 Revolute Joints (Joint JR) -- 8.2.3.7 Gear Joints (Joint JG) -- 8.3 Remarks -- References -- 9 Reconstruction Designs of the Planetary Subsystem. , 9.1 Historical Archives of the Planetary Subsystem -- 9.1.1 Type 1 Design: Mechanism with One Gear Joint -- 9.1.2 Type 2 Design: Mechanism with Two Gear Joints -- 9.1.2.1 All Planet Gears Are Adjacent to Each Other by a Gear Joint -- 9.1.2.2 Two Planet Gears Are Adjacent to Each Other by a Pin-in-Slot Joint -- 9.2 Design Process of the Planetary Subsystem -- 9.2.1 Type 1 Design of the Planetary Subsystem -- 9.2.2 Type 2 Design of the Planetary Subsystem -- 9.2.2.1 Ground Link (Member 1) -- 9.2.2.2 Output Link (Member 3) -- 9.2.2.3 Input Link (Member 2) -- 9.2.2.4 Transmission Links (Members 4 and 5) -- 9.2.2.5 Pin-in-Slot Joint (Joint JA) -- 9.2.2.6 Gear Joints (Joint JG) -- 9.2.2.7 Revolute Joints (Joint JR) -- 9.3 Remarks -- References -- 10 Reconstruction Designs of the Moon Phase Display Device -- 10.1 Historical Archives of the Moon Phase Display Device -- 10.1.1 Related Evidence and Available Designs -- 10.1.2 Possible Driving Power Arrangements -- 10.1.3 Possible Design Types -- 10.2 Design Process of the Moon Phase Display Device -- 10.2.1 Example 1: Ordinary Gear Trains -- 10.2.2 Example 2: Epicyclic Gear Trains with 1-DOF -- 10.2.3 Example 3: Epicyclic Gear Trains with 2-DOF -- References -- 11 Assembly Work and Models -- 11.1 Complete Interior Mechanisms -- 11.1.1 Assembly Constraints of the Lost Mechanisms -- 11.1.1.1 Driving Power of Lost Mechanisms -- 11.1.1.2 Gear Sizes -- 11.1.1.3 Types of Planets -- 11.1.1.4 Epicyclic System of Superior Planets -- 11.1.2 Assembly Work -- 11.2 3D Reconstruction Model -- 11.2.1 Tooth Calculation -- 11.2.1.1 Calendrical Subsystem -- 11.2.1.2 Solar Subsystem -- 11.2.1.3 Planetary Subsystem -- 11.2.2 Detail Designs of Gears -- 11.2.3 Space Arrangement -- 11.2.4 Simulation Model -- References -- Appendix A All 48 Feasible Designs of CompleteInterior Mechanisms -- Appendix B Detailed Design of Model 9. , Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hydrothermal circulation (Oceanography) ; Mid-ocean ridges Research ; Hydrothermal vents ; Sea-floor spreading ; Earth (Planet) Crust ; Aufsatzsammlung ; Mittelozeanischer Rücken ; Mittelozeanischer Rücken ; Seafloor spreading ; Hydrothermalgebiet ; Meeresströmung
    Type of Medium: Online Resource
    Pages: Online-Resource (VIII, 318 S)
    Edition: Electronic reproduction
    ISBN: 0875904130 , 1118665872 , 9781118665879
    Series Statement: Geophysical monograph 148
    DDC: 551.1/36
    RVK:
    Language: English
    Note: Includes bibliographical references , Electronic reproduction
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 29 (1988), S. 2254-2255 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: The inverse problem is studied in a system of mixed spectrum of which the continuous part coincides with that of a repulsive δ potential and the discrete part coincides with that of an attractive δ potential.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 57 (1992), S. 1789-1793 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 34 (1995), S. 6335-6343 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 34 (1995), S. 2678-2685 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 113 (1991), S. 5908-5910 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 96 (1989), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We examine the extensional deformation of oceanic plates at mid-ocean ridges, especially within an axial yield zone where pervasive faulting occurs. Thermal models of ridges are developed which include the effects of lithospheric thickening on the mantle flow, the heat of magmatic crustal accretion at the ridge axis, and the hydrothermal cooling due to seawater circulation in the crust. When hydrothermal circulation occurs, the brittle lithospheric plate at slow-spreading ridges could be as thick as 8-9 km, thicker than the crust; while the plate at fast-spreading ridges is only 1-2 km. For a typical slow-spreading ridge, several kilometres of plate thickening are expected within a distance of 15 km from the ridge axis.When subjected to the extensional force due to horizontal stretching, shear failure by normal faulting will occur pervasively in an axial zone, where the lithospheric plate is the thinnest. Adopting perfectly plastic rheology as a continuum description of deformation on the distributed faults, we obtain approximate solutions for the stress distribution in the yield zone. Within this yield zone, sea-floor topography increases significantly away from the ridge axis so that the resulting gravity sliding force balances the differential horizontal extensional force due to the thickening of the lithospheric plate. Basal stresses induced by the viscously deforming asthenosphere could significantly influence the stresses inside the lithospheric plate only if the mantle viscosity beneath the ridge is on the order of 1020 Pa s, significantly higher than generally accepted values of 1018 Pa s. Model calculations reveal that although the sea floor topography at the Mid-Atlantic Ridge at 13-15 d̀N is regionally compensated, it is locally supported by stresses in the lithospheric plate. The deviation of the lithospheric plate from its thermal isostatic equilibrium position can be explained by necking due to plastic stretching in the axial yield zone and elastic deflection of strong plates outside the yield zone. The best fit models require the yield zones to have a half width of 10-15 km.We find systematic variations in the gravity and topography of the East Pacific Rise, which indicate strong influence of plate spreading rate on the ridge thermal and mechanical structure. At the 16-17 d̀N area, where the half-spreading rate is 4.3 cm yr-1, a prominent axial topographic high and an axial mantle Bouguer gravity low exist, implying a crustal or sub-crustal low density body. The gravity low disappears at the 20-21 d̀N area, where the half-spreading rate is 3.6 cm yr1. As the plate spreading rate decreases from 4.3 cm yr1 at the 16-17 d̀N area to 2.7 cm yr1 at the 22-23 d̀N area, axial ridge topography changes from higher than the thermal isostatic equilibrium position to lower than the isostatic position. The low axial topography at the 22-23 d̀N area can be explained by the existence of a low amplitude median valley.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...