GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2019-09-23
    Description: Highlights: • Mean circulation patterns are assessed and Kuroshio transport is underestimated. • Water mass distribution is compared and analyzed within COREII models. • Main biases of deep MLDs result from the inaccurate Kuroshio separation. • Reasonable modeled tropical dynamics but a discrepancy from the surface wind. Abstract: We evaluate the mean circulation patterns, water mass distributions, and tropical dynamics of the North and Equatorial Pacific Ocean based on a suite of global ocean-sea ice simulations driven by the CORE-II atmospheric forcing from 1963-2007. The first three moments (mean, standard deviation and skewness) of sea surface height and surface temperature variability are assessed against observations. Large discrepancies are found in the variance and skewness of sea surface height and in the skewness of sea surface temperature. Comparing with the observation, most models underestimate the Kuroshio transport in the Asian Marginal seas due to the missing influence of the unresolved western boundary current and meso-scale eddies. In terms of the Mixed Layer Depths (MLDs) in the North Pacific, the two observed maxima associated with Subtropical Mode Water and Central Mode Water formation coalesce into a large pool of deep MLDs in all participating models, but another local maximum associated with the formation of Eastern Subtropical Mode Water can be found in all models with different magnitudes. The main model bias of deep MLDs results from excessive Subtropical Mode Water formation due to inaccurate representation of the Kuroshio separation and of the associated excessively warm and salty Kuroshio water. Further water mass analysis shows that the North Pacific Intermediate Water can penetrate southward in most models, but its distribution greatly varies among models depending not only on grid resolution and vertical coordinate but also on the model dynamics. All simulations show overall similar large scale tropical current system, but with differences in the structures of the Equatorial Undercurrent. We also confirm the key role of the meridional gradient of the wind stress curl in driving the equatorial transport, leading to a generally weak North Equatorial Counter Current in all models due to inaccurate CORE-II equatorial wind fields. Most models show a larger interior transport of Pacific subtropical cells than the observation due to the overestimated transport in the Northern Hemisphere likely resulting from the deep pycnocline
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-11
    Description: Various nutrient sources in the upper waters of oceanic subtropical gyres, which are the Earth's largest oligotrophic ecosystems, play a crucial role in governing the sequestration of atmospheric CO2
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Subtropical gyres cover 26%-29% of the world's surface ocean and are conventionally regarded as ocean deserts due to their permanent stratification, depleted surface nutrients, and low biological productivity. Despite tremendous advances over the past three decades, particularly through the Hawaii Ocean Time-series and the Bermuda Atlantic Time-series Study, which have revolutionized our understanding of the biogeochemistry in oligotrophic marine ecosystems, the gyres remain understudied. We review current understanding of upper ocean biogeochemistry in the North Pacific Subtropical Gyre, considering other subtropical gyres for comparison. We focus our synthesis on spatial variability, which shows larger than expected dynamic ranges of properties such as nutrient concentrations, rates of N-2 fixation, and biological production. This review provides new insights into how nutrient sources drive community structure and export in upper subtropical gyres. We examine the euphotic zone (EZ) in subtropical gyres as a two-layered vertically structured system: a nutrient-depleted layer above the top of the nutricline in the well-lit upper ocean and a nutrient-replete layer below in the dimly lit waters. These layers vary in nutrient supply and stoichiometries and physical forcing, promoting differences in community structure and food webs, with direct impacts on the magnitude and composition of export production. We evaluate long-term variations in key biogeochemical parameters in both of these EZ layers. Finally, we identify major knowledge gaps and research challenges in these vast and unique systems that offer opportunities for future studies. Key Points Subtropical gyres display larger spatiotemporal dynamics in biogeochemical properties than previously considered An improved two-layer framework is proposed for the study of nutrient-driven and biologically mediated carbon export in the euphotic zone Future research will benefit from high-resolution samplings, improved sensitivity of nutrient analyses, and advanced modeling capabilities
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...