GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zenk, Walter; Siedler, Gerold; Ishida, Akio; Holfort, Jürgen; Kashino, Yuji; Kuroda, Yoshifumi; Miyama, Toru; Müller, Thomas J (2005): Pathways and variability of the Antarctic Intermediate Water in the western equatorial Pacific Ocean. Progress in Oceanography, 67(1-2), 245-281, https://doi.org/10.1016/j.pocean.2005.05.003
    Publication Date: 2023-05-12
    Description: In the western equatorial Pacific the low-salinity core of Antarctic Intermediate Water (AAIW) is found at about 800 m depth between potential density levels Sigma-theta = 27.2 and 27.3. The pathways of AAIW and the degradation of its core are studied, from the Bismarck Sea to the Caroline Basins and into the zonal equatorial current system. Both historical and new observational data, and results from numerical circulation model runs are used. The observations include hydrographic stations from German and Japanese research vessels, and Eulerian and Lagrangian current measurements. The model is the JAMSTEC high-resolution numerical model based on the Modular Ocean Model (MOM 2). The general agreement between results from the observations and from the model enables us to diagnose properties and to provide new information on the AAIW. The analysis confirms the paramount influence of topography on the spreading of the AAIW tongue north of New Guinea. Two cores of AAIW are found in the eastern Bismarck Sea. One core originates from Vitiaz Strait and one from St. George's Channel, probably arriving on a cyclonic pathway. They merge in the western Bismarck Sea without much change in their total salt content, and the uniform core then increases considerably in salt content when subjected to mixing in the Caroline Basins. Hydrographic and moored current observations as well as model results show a distinct annual signal in salinity and velocity in the AAIW core off New Guinea. It appears to be related to the monsoonal change that is typically found in the near-surface waters in the region. Lagrangian data are used to investigate the structure of the deep New Guinea Coastal Undercurrent, the related cross-equatorial flow and eddy-structure, and the embedment in the zonal equatorial current system. Results from 17 neutrally buoyant RAFOS floats, ballasted to drift in the AAIW core layer, are compared with a numerical tracking experiment. In the model 73 particles are released at five-day intervals from Station J (2.5°N, 142°E), simulating currents at a moored time series station north of New Guinea. Observed and model track patterns are fairly consistent in space and season. Floats cross the equator preferably north of Cenderawasih Bay, with a maximum range in eddy-motion in this region north of New Guinea. The northward route at 135°E is also reflected in a low-salinity tongue reaching up to 3°N. At that longitude the floats seem to ignore the zonally aligned equatorial undercurrents. Farther to the east (139?145°E), however, the float observations are consistent with low-latitude bands of intermediate currents.
    Keywords: WOCE; World Ocean Circulation Experiment
    Type: Dataset
    Format: application/zip, 14 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: During May and June 2000, an intercomparison was made of buoy meteorological systems from the Woods Hole Oceanographic Institution (WHOI), the National Oceanographic and Atmospheric Administration (NOAA), Pacific Marine Environmental Laboratory (PMEL), and the Japanese Marine Science and Technology Center (JAMSTEC). Two WHOI systems mounted on a 3 m discus buoy, two PMEL systems mounted on separate buoy tower tops and one JAMSTEC system mounted on a wooden platform were lined parallel to, and 25 m from Nantucket Sound in Massachusetts. All systems used R. M. Young propeller anemometers, Rotronic relative humidity and air temperature sensors and Eppley short-wave radiation sensors. The PMEL and WHOI systems used R. M.Young self-siphoning rain gauges, while the JAMSTEC system used a Scientific Technology ORG-115 optical rain gauge. The PMEL and WHOI systems included an Eppley PIR long-wave sensor, while the JAMSTEC had no longwave sensor. The WHOI system used an AIR DB-1A barometric pressure sensor. PMEL and JAMSTEC systems used Paroscientific Digiquartz sensors. The Geophysical Instruments and Measurements Group (GIM) from Brookhaven National Laboratory (BNL) installed two Portable Radiation Package (PRP) systems that include Eppley short-wave and long-wave sensors on a platform near the site. It was apparent from the data that for most of the sensors, the correlation between data sets was better than the absolute agreement between them. The conclusions made were that the sensors and associated electronics from the three different laboratories performed comparably.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant Number NA96GPO429.
    Keywords: Meteorological sensor intercomparison ; Meteorological sensor performance ; Moored instrument measurements
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 9976018 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of oceanography 56 (2000), S. 103-116 
    ISSN: 1573-868X
    Keywords: The New Guinea Coastal Current ; The New Guinea Coastal Undercurrent ; ADCP moorings ; seaonal variation ; hydrography ; monsoonal wind ; Ekman drift ; volume transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The variability of the New Guinea Coastal Current (NGCC) and New Guinea Coastal Undercurrent (NGCUC) were examined from one year time series of current data from ADCP moorings at 2°S, 142°E and 2.5°S, 142°E. Change in the hydrographic structure induced by monsoonal wind forcing was also examined from hydrographic data along the 142°E covering consecutively two winter seasons and two summer seasons. The westward NGCUC was observed to persist year around. The annual mean depth of the current core was 220 m, the mean speed of the zonal component was 54 cm/s with a standard deviation of 15 cm/s at the 2.5°S site. Velocity fluctuations at 20–30 day period were observed year around. Seasonal reversal of the surface intensified NGCC was clearly observed. In the boreal summer characterized by the southeasterly monsoon, westward currents of over 60 cm/s were dominant in the surface layer. The warm, low-salinity layer thickened at this time and sloped down toward the New Guinea coast from the equator. This surface water accumulation may be caused by onshore Ekman drift at the New Guinea coast, combined with weak Ekman upwelling at the equator. In the boreal winter, an eastward surface current developed to 100 cm/s extending down to 100 m depth in response to the northwesterly monsoonal winds. Coastal upwelling was indicated in this season and the surface water accumulated at the equator due to Ekman convergence. Shipboard ADCP data indicated that the NGCUC intensified in boreal summer as the width and depth of the NGCUC increased.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...