GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Publication Date: 2022-03-30
    Description: Cell size is a master trait in the functional ecology of phytoplankton correlating with numerous morphological, physiological, and life‐cycle characteristics of species that constrain their nutrient use, growth, and edibility. In contrast to well‐known spatial patterns in cell size at macroecological scales or temporal changes in experimental contexts, few data sets allow testing temporal changes in cell sizes within ecosystems. To analyze the temporal changes of intraspecific and community‐wide cell size, we use the phytoplankton data derived from the Lower Saxony Wadden Sea monitoring program, which comprises sample‐ and species‐specific measurements of cell volume from 1710 samples collected over 14 yr. We find significant reductions in both the cell volume of most species and the weighted mean cell size of communities. Mainly diatoms showed this decline, whereas the size of dinoflagellates seemed to be less responsive. The magnitude of the trend indicates that cell volumes are about 30% smaller now than a decade ago. This interannual trend is overlayed by seasonal cycles with smaller cells typically observed in summer. In the subset of samples including environmental conditions, small community cell size was strongly related to high temperatures and low total phosphorus concentration. We conclude that cell size captures ongoing changes in phytoplankton communities beyond the changes in species composition. In addition, based on the changes in species biovolumes revealed by our analysis, we warn that using standard cell size values in phytoplankton assessment will not only miss temporal changes in size, but also lead to systematic errors in biomass estimates over time.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Interreg V A program Deutschland‐Nederland of the European Union
    Description: Niedersächsisches Ministerium für Wissenschaft und Kultur http://dx.doi.org/10.13039/501100010570
    Description: https://doi.org/10.5281/zenodo.5799263
    Keywords: ddc:579.8 ; ddc:577.2
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Ecology & Evolution, Springer Nature, 7(7), pp. 994-1001, ISSN: 2397-334X
    Publication Date: 2023-09-21
    Description: The discrepancy between global loss and local constant species richness has led to debates over data quality, systematic biases in monitoring programmes and the adequacy of species richness to capture changes in biodiversity. We show that, more fundamentally, null expectations of stable richness can be wrong, despite independent yet equal colonization and extinction. We analysed fish and bird time series and found an overall richness increase. This increase reflects a systematic bias towards an earlier detection of colonizations than extinctions. To understand how much this bias influences richness trends, we simulated time series using a neutral model controlling for equilibrium richness and temporal autocorrelation (that is, no trend expected). These simulated time series showed significant changes in richness, highlighting the effect of temporal autocorrelation on the expected baseline for species richness changes. The finite nature of time series, the long persistence of declining populations and the potential strong dispersal limitation probably lead to richness changes when changing conditions promote compositional turnover. Temporal analyses of richness should incorporate this bias by considering appropriate neutral baselines for richness changes. Absence of richness trends over time, as previously reported, can actually reflect a negative deviation from the positive biodiversity trend expected by default.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-22
    Description: Thresholds and tipping points are frequently used concepts to address the risks of global change pressures and their mitigation. It is tempting to also consider them to understand biodiversity change and design measures to ensure biotic integrity. Here, we argue that thresholds and tipping points do not work well in the context of biodiversity change for conceptual, ethical, and empirical reasons. Defining a threshold for biodiversity change (a maximum tolerable degree of turnover or loss) neglects that ecosystem multifunctionality often relies on the complete entangled web of species interactions and invokes the ethical issue of declaring some biodiversity dispensable. Alternatively defining a threshold for pressures on biodiversity might seem more straightforward as it addresses the causes of biodiversity change. However, most biodiversity change appears to be gradual and accumulating over time rather than reflecting a disproportionate change when transgressing a pressure threshold. Moreover, biodiversity change is not in synchrony with environmental change, but massively delayed through inertia inflicted by population dynamics and demography. In consequence, formulating environmental management targets as preventing the transgression of thresholds is less useful in the context of biodiversity change, as such thresholds neither capture how biodiversity responds to anthropogenic pressures nor how it links to ecosystem functioning. Instead, addressing biodiversity change requires reflecting the spatiotemporal complexity of altered local community dynamics and temporal turnover in composition leading to shifts in distributional ranges and species interactions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-12-11
    Description: Marine community diversity surveys require a reliable assessment to estimate ecosystem functions and their dynamics. For these, non-invasive environmental DNA (eDNA) metabarcoding is increasingly applied in zoological studies to complement or even replace traditional morphological identification methods. However, uncertainties remain about the accuracy of the diversity detected with eDNA to capture the actual diversity in the field. Here, we validate the reliability of eDNA metabarcoding in identifying metazoan biodiversity in highly dynamic marine waters of the North Sea. We analyzed biodiversity from water (eDNA) and zooplankton samples with cytochrome c oxidase subunit 1 (COI) and 18S rRNA (18S) metabarcoding at Helgoland Roads and validated the optimal molecular resolution by morphological and molecular zooplankton identification (metabarcoding) with the result of merely a few false-negative detections. eDNA and zooplankton metabarcoding resolved 354 species from all major and in total 16 metazoan phyla. This molecular genetic species inventory overlapped by 95.9% (COI) and 81.9% (18S) with published inventories of local, morphologically identified species, among them neozoa and rediscovered species. Even though half of all species were detected by both eDNA and zooplankton metabarcoding, the methods differed significantly in their detected diversity. eDNA metabarcoding performed very well in cnidarians and annelids, whereas zooplankton metabarcoding identified higher numbers of fish and malacostraca. Species assemblages significantly differed between the individual sampling events and the cumulative number of identified species increased steadily over the sampling period and did not reach saturation. About a third of the species were detected only once while a core community of 22 species was identified continuously. Our study confirms eDNA metabarcoding to be a powerful tool to identify and analyze North Sea fauna in highly dynamic waters and we recommend investing in high sampling efforts by repetitive sampling and replication using at least 0.45 μm filters to increase filtration volume.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-09-27
    Description: Cell size is a master trait in the functional ecology of phytoplankton correlating with numerous morphological, physiological, and life-cycle characteristics of species that constrain their nutrient use, growth, and edibility. In contrast to well-known spatial patterns in cell size at macroecological scales or temporal changes in experimental contexts, few data sets allow testing temporal changes in cell sizes within ecosystems. To analyze the temporal changes of intraspecific and community-wide cell size, we use the phytoplankton data derived from the Lower Saxony Wadden Sea monitoring program, which comprises sample- and species-specific measurements of cell volume from 1710 samples collected over 14 yr. We find significant reductions in both the cell volume of most species and the weighted mean cell size of communities. Mainly diatoms showed this decline, whereas the size of dinoflagellates seemed to be less responsive. The magnitude of the trend indicates that cell volumes are about 30% smaller now than a decade ago. This interannual trend is overlayed by seasonal cycles with smaller cells typically observed in summer. In the subset of samples including environmental conditions, small community cell size was strongly related to high temperatures and low total phosphorus concentration. We conclude that cell size captures ongoing changes in phytoplankton communities beyond the changes in species composition. In addition, based on the changes in species biovolumes revealed by our analysis, we warn that using standard cell size values in phytoplankton assessment will not only miss temporal changes in size, but also lead to systematic errors in biomass estimates over time.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...