GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2024-05-02
    Description: We compared Centroid Moment Tensors (CMTs), calculated for large (Mw 〉5), shallow (〈30 km) seismic events to the orientations of seafloor lineaments (n = 4000) mapped throughout the Lau Basin, in the SW Pacific. Ship-based multibeam was combined with vertical gravity gradient data to provide comprehensive coverage to create the lineament map. By comparing the possible focal planes of the CMTs to the orientations of the lineaments, the most likely fault plane solutions were selected, thus classifying the faults and establishing the nature of the highly variable stress regimes in the basin. We resolved the strike, dip and dip direction of 308 faults, and classified 258 additional structures by fault type. The majority of the table was data downloaded from the Global Centroid Moment Tensor (GCMT) database (www.globalcmt.org: accessed October 2018). For more details about the column headers consult the GCMT database website. New data from this study include the latitude and longitude error estimates (in meters), the classified faults (column: 'fault_type'), and the stress domain (column: 'stress_domain'), allocated to each of the classified faults.
    Keywords: Area/locality; B010186B; B010285E; B010484C; B010783C; B010783E; B010903A; B011101E; B011398E; B011498H; B011683A; B011694B; B011694F; B011700C; B011700E; B011777B; B011800B; B012099A; B012300F; B012300I; B012385B; B012598A; B012699D; B012999A; B020201E; B020487B; B020494A; B020796B; B020901A; B021298F; B021581B; B021587A; B021696B; B022093C; B022102F; B022387C; B022491B; B022503C; B022689B; B022787B; B030395E; B030601B; B030880A; B030894B; B031198D; B031293F; B031387A; B031387B; B031387E; B031393C; B031481A; B031487C; B031692A; B031992C; B031998A; B032003A; B032103D; B032377B; B032377C; B032377D; B032596A; B032682D; B032780A; B032780B; B032786A; B032882D; B032893B; B032982B; B032986B; B033002A; B033091A; B040691B; B040980A; B040991B; B041083C; B041201E; B041586A; B041780A; B041991C; B042088C; B042186A; B042294B; B042585D; B042700A; B042800B; B042879B; B042890B; B042979A; B050186A; B050198A; B050280D; B050392A; B050601C; B051486G; B051802C; B051981B; B052102D; B053179B; B060583A; B060598C; B060790C; B061186B; B061382A; B061479B; B061481A; B061492F; B061699D; B061797B; B061895B; B061895C; B062392E; B062502B; B062601M; B070188A; B070188B; B070689A; B070900A; B071684B; B071789A; B071997B; B072202A; B072602B; B072603D; B073101E; B080178A; B080497D; B080586A; B080586B; B080799A; B081087A; B081095B; B081286A; B081295A; B081299A; B081388C; B081694H; B081696C; B081696F; B082185A; B082290B; B082486A; B082486C; B082500A; B082577A; B082603B; B082686B; B082788B; B082790A; B082903B; B082995B; B083195C; B090684A; B090695A; B090882C; B091081A; B091377A; B091395C; B091799C; B091899D; B092097G; B092390A; B092492E; B092497C; B092688E; B092695A; B092995A; B093082A; B100179B; B100285B; B100295B; B100482B; B100684A; B100696A; B101303E; B101384A; B101501A; B101802D; B101802E; B101982A; B102287E; B102290A; B102677A; B102677B; B102885C; B103093C; B103100E; B110187C; B110499B; B110598F; B110796A; B111082A; B111382A; B111494B; B111596B; B111696C; B111696F; B111784G; B111796C; B111796E; B111797A; B111997B; B112090C; B112479A; B113087B; B113088B; B120386A; B120491A; B120696E; B120796A; B120888A; B120888B; B121286A; B121286C; B121386A; B121985A; B122190A; B122285A; B122285B; B122383A; B122387A; B122791B; B122998A; back-arc basins; Body wave magnitude; Body waves, components; Body waves, shortest period; Body waves, stations; C010987B; C011298J; C011498E; C012204A; C020399A; C020991A; C021393D; C022304C; C022304E; C022490A; C030693G; C030799E; C031293D; C031387F; C032004G; C032504E; C041704C; C041793C; C051504D; C051583A; C061404A; C070278A; C080497C; C080897C; C082997B; C090382E; C091400B; C091783C; C092304C; C100480A; C101104F; C101302A; C101804A; C103100F; C110892B; C111004D; C112304C; C120301A; C121804G; C200502181525A; C200503132233A; C200504261133A; C200504261856A; C200505051011A; C200505111540A; C200507310419A; C200508071135A; C200508071354A; C200508071441A; C200508221648A; C200509041213A; C200510191410A; C200510291633A; C200512071934A; C200512130316A; C200512130732A; C200512161433A; C200512201148A; C200601290826A; C200602061134A; C200602260418A; C200603020747A; C200603051712A; C200603140529A; C200603171946A; C200603191254A; C200604031604A; C200604032027A; C200604251512A; C200604300703A; C200605211757A; C200606031326B; C200606131540A; C200606151715A; C200606151810A; C200606232150A; C200606270836A; C200606281322A; C200607020257A; C200607031949A; C200607041259A; C200608111807A; C200608111841A; C200608112020A; C200611061053A; C200611061124A; C200611210112A; C200611241711A; C200701160153A; C200702031647A; C200702050956A; C200702051016A; C200702051019A; C200703270803B; C200704050246A; C200704050325A; C200704130150A; C200705030630A; C200706140529A; C200706192036A; C200706231914A; C200706231920A; C200706231935A; C200706232102A; C200706232152A; C200706241015A; C200706260801A; C200707020054A; C200707090650A; C200707170939A; C200707180007A; C200707182351A; C200707191933A; C200707270351A; C200708222224A; C200709101004A; C200709140546A; C200709160010A; C200709180610A; C200709302011A; C200710050352A; C200710050417A; C200710300458A; C200711231222A; C200711231237A; C200712150246A; C200801201630A; C200801220009A; C200801220628A; C200801220755A; C200801221049A; C200801231220A; C200801240250A; C200801271528A; C200801302347A; C200801310152A; C200802011026A; C200802112320A; C200802141905A; C200803161956A; C200804151724A; C200804160035A; C200804251844A; C200806200424A; C200807221851A; C200807231255A; C200807231324A; C200807231354A; C200808141242A; C200808141510A; C200808240100A; C200809010531A; C200809010706A; C200809011032A; C200810030834A; C200810092308A; C200810232336A; C200810240058A; C200811201758A; C200901300347A; C200902080724A; C200902110931A; C200903070941A; C200903241813A; C200904142237A; C200904142329A; C200905110526A; C200905260049A; C200907020806A; C200907101604A; C200907211507A; C200908070242A; C200908070334A; C200908071734A; C200909210606A; C200910011739A; C200910011821A; C200910011840A; C200910031402A; C200910031410A; C200910051852A; C200910071310A; C200910141800A; C200910271201A; C200910281955A; C200911050600A; C200911050604A; C200911050611A; C200911291033A; C200912262123A; C200912291202A; C201001131621A; C201001131649A; C201001131651A; C201001171046A; C201002071312A; C201002071359A; C201002150529A; C201003280207A; C201003280251A; C201004042028A; C201007041338A; C201007041613A; C201007171620A; C201008300444A; C201009071249A; C201009071613A; C201009291225A; C201012011601A; C201012182224A; C201012201743A; C201012210736A; C201101211711A; C201101241331A; C201102031113A; C201102280224A; C201103262249A; C201103280847A; C201103310011A; C201103310259A; C201103310744A; C201103311631A; C201103311709A; C201104240601A; C201105021321A; C201105021922A; C201105171035A; C201105180810A; C201105240853A; C201105241630A; C201105300006A; C201106051635A; C201106051656A; C201106192126A; C201106280707A; C201107051902A; C201107061011A; C201107061344A; C201107061446A; C201107101847A; C201107102029A; C201107110054A; C201108030320A; C201108201027A; C201109222307A; C201109230901A; C201110280447A; C201110280913A; C201111130624A; C201111190541A; C201111190706A; C201112140048A; C201201041345A; C201201041804A; C201201041854A; C201201081951A; C201201082004A; C201201090006A; C201202220426A; C201202220804A; C201202221003A; C201202240202A; C201202260246A; C201202260508A; C201202260521A; C201202261117A; C201202261212A; C201202261349A; C201202261613A; C201202261628A; C201202261919A; C201202261937A; C201202270135A; C201202270301A; C201202270711A; C201202271434A; C201202271454A; C201203122148A; C201203192346A; C201203300618A; C201203312252A; C201205041758A; C201205051118A; C201205132246A; C201206041418A; C201206070023A; C201206170638A; C201206190036A; C201207060040A; C201207110357A; C201207230328A; C201208030508A; C201208030722A; C201208031945A; C201208100642A; C201208192054A; C201208200048A; C201208200215A; C201209271131A; C201209271139A; C201210121510A; C201210132236A; C201210220032A; C201210301059A; C201211032259A; C201211132323A; C201211220619A; C201211281016A; C201212120144A; C201212141652A; C201212271531A; C201301020819A; C201301031649A; C201301291329A; C201302152120A; C201302250259A; C201302250356A; C201304120048A; C201304262010A; C201305060733A; C201305310334A; C201306181313A; C201306301513A; C201307090124A; C201307290812A; C201309081000A; C201311141415A; C201312111809A; C201312151451A; C201401210129A; C201401220341A; C201401231209A; C201401261039A; C201401300446A; C201402230216A; C201402231654A; C201402231700A; C201402240119A; C201403070557A; C201403161115A; C201403281437A; C201403281454A; C201404250841A; C201405020746A; C201405131005A; C201405180058A; C201405180246A; C201405180638A; C201406062306A; C201406081108A; C201406091119A; C201406291552A; C201406291715A; C201406291824A; C201407041130A; C201407101732A; C201407212144A; C201408141846A; C201408271631A; C201409280623A; C201410051716A; C201410192047A; C201410201315A; C201410240452A; C201410280044A; C201410280315A; C201411051813A; C201411240417A;
    Type: Dataset
    Format: text/tab-separated-values, 42372 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Institute of Geosciences Sedimentology, Coastal- and Continental Shelf Research Christian-Albrechts-University, Kiel
    In:  Alkor-Berichte, AL396 . Institute of Geosciences Sedimentology, Coastal- and Continental Shelf Research Christian-Albrechts-University, Kiel, Kiel, Germany, 34 pp.
    Publication Date: 2021-01-29
    Description: 05th July – 19th July 2012
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Highlights • Geological characteristics of deep-sea minerals vary widely. • Deep-sea mineral occurrences differ in their resource potential. • Sizes of most favorable areas of formation influence exploration efforts. Abstract Marine minerals such as manganese nodules, Co-rich ferromanganese crusts, and seafloor massive sulfides are commonly seen as possible future resources that could potentially add to the global raw materials supply. At present, a proper assessment of these resources is not possible due to a severe lack of information regarding their size, distribution, and composition. It is clear, however, that manganese nodules and Co-rich ferromanganese crusts are a vast resource and mining them could have a profound impact on global metal markets, whereas the global resource potential of seafloor massive sulfides appears to be small. These deep-sea mineral commodities are formed by very different geological processes resulting in deposits with distinctly different characteristics. The geological boundary conditions also determine the size of any future mining operations and the area that will be affected by mining. Similarly, the sizes of the most favorable areas that need to be explored for a global resource assessment are also dependent on the geological environment. Size reaches 38 million km2 for manganese nodules, while those for Co-rich crusts (1.7 million km2) and massive sulfides (3.2 million km2) are much smaller. Moreover, different commodities are more abundant in some jurisdictions than in others. While only 19% of the favorable area for manganese nodules lies within the Exclusive Economic Zone of coastal states or is covered by proposals for the extension of the continental shelf, 42% of the favorable areas for massive sulfides and 54% for Co-rich crusts are located in EEZs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Poster] In: Society of Economic Geologists 2010 Conference, 03.-05.10.2010, Keystone, Colorado, USA .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  [Poster] In: GeoBerlin 2015, 04.-07.10.2015, Berlin, Germany .
    Publication Date: 2016-11-30
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-04-27
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-04-27
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-05-29
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    ESKA ; Cairn
    In:  Annales des Mines - Responsabilite et Environnement, 85 (1). pp. 14-18.
    Publication Date: 2019-09-23
    Description: Manganese nodules, Co-rich crusts, and Seafloor massive Sulfides (SMS) are commonly seen as possible future resources that could potentially add to the global raw materials supply. At present, a proper global assessment of these resources is not possible due to a severe lack of information regarding their size, global distribution, and composition. The sizes of the most prospective areas that need to be explored for a global resource assessment are vast. Future deep-sea minerals exploration has to provide higher-resolution data and at the same time needs to cover large areas of the seafloor in a fast and cost-efficient manner. While nodules and crusts are 2-dimensional occurrences and an assessment of their distribution at the seafloor itself seems sufficient, seafloor massive sulfides are 3-dimensional sites and a proper resource assessment will always require drilling. Here the development of methods to image the subseafloor and to recognize economically interesting sites prior to drilling is of importance.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Johann Wolfgang Goethe-Universität, Frankfurt am Main, 220 pp
    Publication Date: 2019-09-23
    Description: Im Rahmen dieser Dissertation wurde die spätpleistozäne und holozäne Landschaftsentwicklung im Umfeld der im Tal des Wadis Chuera in Nordsyrien liegenden bronzezeitlichen Siedlung Tell Chuera untersucht. Durch die Kombination von hochgenauen Vermessungen, Satellitenbildauswertungen und Untersuchungen der Wadisedimente konnten mehrere flussgeschichtliche Entwicklungsphasen erarbeitet und in einen chronostratigraphischen Rahmen eingeordnet werden. Über ein grobsandig-kiesiges System eines verzweigten Flusses wurden mindestens bis ins Obere Pleistozän mächtige Kieslagen im Untersuchungsgebiet sedimentiert. Innerhalb einer fossilen Rinne abgelagerte lössähnliche Sedimente, welche die Kiesfolgen partiell überlagern, konnten relativchronologisch ins Obere Pleistozän gestellt werden und dokumentieren vermutlich eine trockene Phase. Durch die mit scharfer Diskordanz über den Kiesen abgelagerten pelitischen Hochflutsedimente wird ein abrupter flussdynamischer Umbruch von dem eines ursprünglich verzweigten Flusses zu dem eines mäandrierenden Flusses mit Hochflutsedimentation nachgewiesen. IRSL-Datierungen stellen den Beginn der Ablagerung der Hochflutsedimente ins letzte Glazial. Der größte Teil der Sedimente wurde jedoch im frühen und mittleren Holozän (ca. 9 und 5 kaBP) abgelagert, so dass zu Beginn der Hauptsiedlungsphase am Tell Chuera (3. Jahrtausend v.Chr.) die Oberfläche der Überschwemmungsebene ihr heutiges Niveau nahezu erreicht hatte. Bis dahin führten großflächige Überschwemmungen zur Hochflutsedimentation in der Aue. Ein erneuter Wechsel der fluvialen Geomorphodynamik und der Sedimentationsverhältnisse zeigt sich darin, dass die letzten ca. 5000 Jahre keine nennenswerte Sedimentation in der Hochflutebene zu verzeichnen war. Es kam zu einer bis heute stattfindenden, lateralen Verlagerung der Mäander des Wadis und damit der Aufarbeitung von Teilen der Kiese und Hochflutsedimente. Siedlungsspuren im Wadiverlauf weisen auf eine Periodizität des Abflusses des Wadis Chuera zwischen etwa 4.7 und 4.2 kaBP hin. Die Theorie einer verstärkten Akkumulation von Kolluvien der Rahmenhöhen im Wadital als direkte Folge eines steigenden Siedlungsdrucks während der Hauptsiedlungsphase konnte widerlegt werden. Vielmehr handelt es sich bei den vermeintlichen Kolluvien um fluvial aufgearbeitete Hochflutsedimente. Anthropogene Eingriffe in den Landschaftshaushalt lassen sich in Form von Kalkkrustensteinbrüchen und einem komplexen Wegenetz nachweisen.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...