GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 689 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 80 (1984), S. 243-248 
    ISSN: 1432-1424
    Keywords: forskolin ; collecting tubule ; adenylate cyclase ; water permeability ; vasopressin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Forskolin is a unique diterpene that may directly activate the catalytic subunit of adenylate cyclase. We therefore examined the effect of 50 μm forskohn on osmotic water permeability in rabbit cortical collecting tubules perfusedin vitro. Forskolin increased net volume flux (J v , from 0.30 to 1.22 nl/mm/min,P〈0.02) in all tubules. The hydro-osmotic effect of forskolin was similar with respect to magnitude and time course to that produced by a maximal dose (250 μU/ml) of arginine vasopressin. An additive effect onJ v andL p was not observed when maximal concentrations of forskolin and arginine vasopressin were given simultaneously. The compound d(CH2)5Tyr(Et) VAVP, which noncompetitively inhibits the vasopressin receptor, significantly reduced collecting tubular hydro-osmotic response to arginine vasopressin. In contrast, the hydro-osmotic response to forskolin was maintained in the presence of d(CH2)5 Tyr(Et)VAVP. However, the hydro-osmotic response to forskolin could be inhibited by 1.0 μm guanine 5′-(β,γ-imido) triphosphate (GppNHp) and by the calmodulin inhibitor N-(6-amenohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). These results demonstrate that forskolin exerts an hydro-osmotic effect in the mammalian nephron which occurs independent of the vasopressin receptor. Guanine nucleotide regulatory proteins may modulate the osmotic water permeability effect of forskolin. Finally, calmodulin is required for full expression of the effect of forskolin to increase osmotic water flux.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...