GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In its mammalian host, Trypanosoma brucei covers its iron requirements by receptor-mediated uptake of host transferrin (Tf). The Tf-receptor (Tf-R) is a heterodimeric membrane protein encoded by expression site-associated gene (ESAG) 6 and 7 located promoter-proximal in a polycistronic expression site (ES). Each of the 20 ESs encodes a slightly different Tf-R; these differences strongly affect the binding affinity for Tfs of different hosts. The Tf-R encoded in the 221 ES has a low affinity for dog Tf. Transfer of trypanosomes with an active 221 ES to dilute dog serum leads to growth arrest, which they can overcome by switching to another ES encoding a Tf-R with higher affinity for dog Tf. Here we show that trypanosomes can also adapt to dilute dog serum without switching but by replacing the ESAG7 gene in the 221 ES by one from another ES, by deleting ESAG7 from the 221 ES with concomitant upregulation of transcription of ESAG7 in ‘silent’ ESs, by grossly overproducing the 221 Tf-R or by combinations of these alterations. Our results illustrate the striking genetic flexibility of trypanosomes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The nuclear DNA of Trypanosoma brucei and other kinetoplastid flagellates contains the unusual base β-d-glucosyl-hydroxymethyluracil, called J, replacing part of the thymine in repetitive sequences. We have described a 100 kDa protein that specifically binds to J in duplex DNA. We have now disrupted the genes for this J-binding protein (JBP) in T. brucei. The disruption does not affect growth, gene expression or the stability of some repetitive DNA sequences. Unexpectedly, however, the JBP KO trypanosomes contain only about 5% of the wild-type level of J in their DNA. Excess J, randomly introduced into T. brucei DNA by growing the cells in the presence of the J precursor 5-hydroxymethyldeoxyuridine, is lost by simple dilution as the KO trypanosomes multiply, showing that JBP does not protect J against removal. In contrast, cells containing JBP lose excess J only sluggishly. We conclude that JBP is able to activate the thymine modification enzymes to introduce additional J in regions of DNA already containing a basal level of J. We propose that JBP is a novel DNA modification maintenance protein.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 353 (1991), S. 772-775 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The analysis of protein-coding transcripts produced by RNA polymerase I can be complicated by the production of transcripts initiating at RNA polymerase II, rather than polymerase I,startpoints8'11. We therefore aimed for a neor-gene integrated downstream of a non-transcribed spacer in the rDNA ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © 2007 The Author et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in Nucleic Acids Research 35 (2007): 2107-2115, doi:10.1093/nar/gkm049.
    Description: Trypanosomatids contain an unusual DNA base J (ß-D-glucosylhydroxymethyluracil), which replaces a fraction of thymine in telomeric and other DNA repeats. To determine the function of base J, we have searched for enzymes that catalyze J biosynthesis. We present evidence that a protein that binds to J in DNA, the J-binding protein 1 (JBP1), may also catalyze the first step in J biosynthesis, the conversion of thymine in DNA into hydroxymethyluracil. We show that JBP1 belongs to the family of Fe2+ and 2-oxoglutarate-dependent dioxygenases and that replacement of conserved residues putatively involved in Fe2+ and 2-oxoglutarate-binding inactivates the ability of JBP1 to contribute to J synthesis without affecting its ability to bind to J-DNA. We propose that JBP1 is a thymidine hydroxylase responsible for the local amplification of J inserted by JBP2, another putative thymidine hydroxylase.
    Description: This work was funded by a grant from the Netherlands Organization for Scientific Research and Chemical Sciences (NWO-CW) to P.B., NIH grant A1063523 to R.S. and NIH grant GM063584 to R.P.H.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Society for Microbiology, 2006. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Eukaryotic Cell 5 (2006): 1276-1286, doi:10.1128/EC.00116-06.
    Description: The host range of African trypanosomes is influenced by innate protective molecules in the blood of primates. A subfraction of human high-density lipoprotein (HDL) containing apolipoprotein A-I, apolipoprotein L-I, and haptoglobin-related protein is toxic to Trypanosoma brucei brucei but not the human sleeping sickness parasite Trypanosoma brucei rhodesiense. It is thought that T. b. rhodesiense evolved from a T. b. brucei-like ancestor and expresses a defense protein that ablates the antitrypanosomal activity of human HDL. To directly investigate this possibility, we developed an in vitro selection to generate human HDL-resistant T. b. brucei. Here we show that conversion of T. b. brucei from human HDL sensitive to resistant correlates with changes in the expression of the variant surface glycoprotein (VSG) and abolished uptake of the cytotoxic human HDLs. Complete transcriptome analysis of the HDL-susceptible and -resistant trypanosomes confirmed that VSG switching had occurred but failed to reveal the expression of other genes specifically associated with human HDL resistance, including the serum resistance-associated gene (SRA) of T. b. rhodesiense. In addition, we found that while the original active expression site was still utilized, expression of three expression site-associated genes (ESAG) was altered in the HDL-resistant trypanosomes. These findings demonstrate that resistance to human HDLs can be acquired by T. b. brucei.
    Description: These studies were supported by grants AI39033 and AI054596 from the National Institutes of Health and the Ellison Medical Foundation. Mass spectrometry was supported by NIH P20 RR17695 from the Institutional Development Award (IDeA) Program of the National Center for Research Resources. Computational resources were provided by the Josephine Bay Paul Center for Comparative Molecular Biology and Evolution (MBL) through funds provided by the W. M. Keck Foundation and the G. Unger Vetlesen Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...