GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    facet.materialart.
    Unknown
    In:  EPIC3QUEST Open Science Conference (OSC), 26 - 28 March 2007, Paramount Hotel, Oxford, UK.
    Publication Date: 2019-07-17
    Description: Recent measurement of ice core δ13C-CH4 and deconvolution of the global CH4 budget during abrupt climate change events has led to a widespread speculation regarding the mechanisms behind observed rapid changes in atmospheric CH4 concentrations. Using a paleoclimate scenario from an intermediate complexity climate model and a dynamic global vegetation model, we simulate changes in the magnitude and carbon isotope composition of CH4 emitted from wetlands and fires. In a control scenario, global wetland CH4 emissions are dominated by the tropics. During full glacial climate conditions of low sea level, tropical continental shelves supported wetland areas larger than those at present. Preliminary results indicate that any shift in the carbon isotope ratio of the CH4 forming substrate due to changing vegetation composition may have been offset by the effect of warmer temperatures on the fractionation between substrate and CH4. These results may partially explain why observed δ13C-CH4 appears stable even at times of rapidly changing atmospheric CH4 concentrations, and help in ice-core based deconvolution of the atmospheric CH4 record.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ) combines process-based, large-scale representations of terrestrial vegetation dynamics and land-atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these ‘fast’ processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire-response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually.Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5°° × 0.5°° grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter-annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2. Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-05-15
    Description: Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and...
    Keywords: Sustainability Science
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...