GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-27
    Description: Recent laboratory shear-slip experiments conducted on a nominally flat fric tional interfacerepor ted the intriguing details of a two-phase nucleation of stick-slip motion that precedes the dynamicrupture propagation. This behavior was subsequently reproduced by a physics-based model incorporatinglaboratory-derived rate-and-state friction laws. However, applying the laboratory and theoretical results tothe nucleation of crustal earthquakes remains challenging due to poorly constrained physical and frictionproper ties of fault zone rocks at seismogenic depths. Here we apply the same physics-based model tosimulate the nucleation process of crustal earthquakes using unique data acquired during the San AndreasFault Observatory at Depth (SAFOD) experiment and new and existing measurements of friction propertiesof SAFOD drill core samples. Using this well-constrained model, we predict what the nucleation phasewill look like for magnitude ∼2 repeating earthquakes on segments of the San Andreas Fault at a 2.8 kmdepth. We find that despite up to 3 orders of magnitude difference in the physical and friction parametersand stress conditions, the behavior of the modeled nucleation is qualitatively similar to that of laboratoryearthquakes, with the nucleation consisting of two distinct phases. Our results further suggest thatprecursory slow slip associated with the earthquake nucleation phase may be observable in the hoursbefore the occurrence of the magnitude ∼2 earthquakes by strain measurements close (a few hundredmeters) to the hypocenter, in a position reached by the existing borehole
    Description: Published
    Description: 162–173
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 427 (2015): 1-10, doi:10.1016/j.epsl.2015.06.044.
    Description: Since a regional earthquake in 1951, shallow creep events on strike-slip faults within the Salton Trough, Southern California have been triggered at least 10 times by M ≥ 5.4 earthquakes within 200 km. The high earthquake and creep activity and the long history of digital recording within the Salton Trough region provide a unique opportunity to study the mechanism of creep event triggering by nearby earthquakes. Here, we document the history of fault creep events on the Superstition Hills Fault based on data from creepmeters, InSAR, and field surveys since 1988. We focus on a subset of these creep events that were triggered by significant nearby earthquakes. We model these events by adding realistic static and dynamic perturbations to a theoretical fault model based on rate- and state-dependent friction. We find that the static stress changes from the causal earthquakes are less than 0.1 MPa and too small to instantaneously trigger creep events. In contrast, we can reproduce the characteristics of triggered slip with dynamic perturbations alone. The instantaneous triggering of creep events depends on the peak and the time-integrated amplitudes of the dynamic Coulomb stress change. Based on observations and simulations, the stress change amplitude required to trigger a creep event of 0.01 mm surface slip is about 0.6 MPa. This threshold is at least an order of magnitude larger than the reported triggering threshold of non-volcanic tremors (2-60 KPa) and earthquakes in geothermal fields (5 KPa) and near shale gas production sites (0.2-0.4 kPa), which may result from differences in effective normal stress, fault friction, the density of nucleation sites in these systems, or triggering mechanisms. We conclude that shallow frictional heterogeneity can explain both the spontaneous and dynamically triggered creep events on the Superstition Hills Fault.
    Description: This work was supported by NSF EAR awards 1246966 and 1411704 (M. Wei) and a Canada NSERC Discovery grant (Y. Liu).
    Keywords: Dynamic triggering ; Creep events ; Shallow frictional heterogeneity ; Amplitude threshold ; Superstition Hills Fault
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 214 (2018): 2224–2235, doi:10.1093/gji/ggy201.
    Description: The key kinematic earthquake source parameters: rupture velocity, duration and area, shed light on earthquake dynamics, provide direct constraints on stress drop, and have implications for seismic hazard. However, for moderate and small earthquakes, these parameters are usually poorly constrained due to limitations of the standard analysis methods. Numerical experiments by Kaneko and Shearer demonstrated that standard spectral fitting techniques can lead to roughly one order of magnitude variation in stress-drop estimates that do not reflect the actual rupture properties even for simple crack models. We utilize these models to explore an alternative approach where we estimate the rupture area directly. For the suite of models, the area averaged static stress drop is nearly constant for models with the same underlying friction law, yet corner-frequency-based stress-drop estimates vary by a factor of 5–10 even for noise-free data. Alternatively, we simulated inversions for the rupture area as parametrized by the second moments of the slip distribution. A natural estimate for the rupture area derived from the second moments is A = πLcWc, where Lc and Wc are the characteristic rupture length and width. This definition yields estimates of stress drop that vary by only 10 per cent between the models but are slightly larger than the true area averaged values. We simulate inversions for the second moments for the various models and find that the area can be estimated well when there are at least 15 available measurements of apparent duration at a variety of take-off angles. The improvement compared to azimuthally averaged corner-frequency-based approaches results from the second moments accounting for directivity and removing the assumption of a circular rupture area, both of which bias the standard approach. We also develop a new method that determines the minimum and maximum values of rupture area that are consistent with a particular data set at the 95 per cent confidence level. For the Kaneko and Shearer models with 20+ randomly distributed observations and ∼10 per cent noise levels, we find that the maximum and minimum bounds on rupture area typically vary by a factor of two and that the minimum stress drop is often more tightly constrained than the maximum.
    Description: This work was supported by USGS NEHRP Award G17AP00029. The research was supported by the Southern California Earthquake Center (SCEC; Contribution No. 8013). SCEC is funded by NSF Cooperative Agreement EAR-1033462 and USGS Cooperative Agreement G12AC20038. YK was supported by both public funding from the Government of New Zealand and the Royal Society of New Zealand’s Rutherford Discovery Fellowship.
    Keywords: Earthquake dynamics ; Earthquake source observations ; Body waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Clinical and experimental pharmacology and physiology 16 (1989), S. 0 
    ISSN: 1440-1681
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0460
    Keywords: Key words: Oral feeding — Arterial oxygen saturation — Severely disabled people — Deglutition — Deglutition disorders.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Control of the circulatory and respiratory systems is especially important in severely disabled people. The purpose of this study was to clarify the response of hemoglobin oxygen saturation level (SpO2), pulse rate, and respiratory rate during oral feeding in severely disabled persons. Continuous measurement of these variables was done by pulse oximetry and respiratory inductance plethysmography under two experimental settings in eight severely disabled persons aged 14–28 yrs. Setting I consisted of the following three procedures: (a) a 30-min period in the supine position, (b) a 50-min period in a sitting position, and (c) a 30-min period in the supine position. Setting II consisted of the following four procedures: (a) a 30-min period before the meal in the supine position, (b) a nonspecified period in a sitting position during which the meal was taken, (c) a 30-min period after the meal in the same sitting position, and (d) a 30-min period in the supine position. Results showed that mean SpO2 level decreased and mean pulse rate increased during the meal in almost all subjects. In many cases, pulse rate and SpO2 level did not return to baseline values in the sitting position after the meal. These findings indicate that oral feeding of severely disabled persons in a sitting position places considerable stress on the circulatory system, the effects of which may last after the meal in some cases.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0460
    Keywords: Lip pressure ; Disabled children ; Developmental aspects ; Deglutition ; Deglutition disorders
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Lip functions play an important role in the oral stages of feeding. Lip closing is an important early motor act in food acquisition and is essential for controlling chewing and swallowing. To date, there have been few papers on the developmental aspects of lip closing strength when taking in food, especially with regard to disabled children. This investigation was designed to produce an ordinal scale of midline lip pressure measurements for a cross-sectional, age-grouped population of normal children. Developmental changes in lip pressure were then compared with those of two populations of disabled children. Pressure measurements were obtained with a strain gauge transducer that was embedded in a spoon during normal feeding. The study population consisted of 104 normal children ranging in age from 5 months to 5 years, 11 children who showed developmental delay (mean 4.5 years), and 10 children with cerebral palsy (mean 5.0 years). Lip pressure was found to increase steadily from 5 months to 3 years and to increase slightly from 3 to 5 years in the normal population. The developmentally delayed group and the cerebral palsied group produced lip pressures and coefficients of variation below those of the normal 1 to 2-year-old group.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-01
    Description: Prechondrogenic condensation is a critical step for skeletal pattern formation. Our previous study showed that ATP oscillations play an essential role in prechondrogenic condensation because they induce oscillatory secretion. However, the molecular mechanisms that underlie ATP oscillations remain poorly understood. We examined how differential changes in proteins are implicated in ATP oscillations during chondrogenesis by using liquid chromatography/mass spectrometry. Our analysis showed that a number of proteins involved in ATP synthesis/consumption, catabolic/anabolic processes, actin dynamics, cell migration and adhesion were detected at either the peak or the trough of ATP oscillations, which implies that these proteins have oscillatory expression patterns that are coupled to ATP oscillations. On the basis of the results, we suggest that (1) the oscillatory expression of proteins involved in ATP synthesis/consumption and catabolic/anabolic processes can contribute to the generation or maintenance of ATP oscillations and that (2) the oscillatory expression of proteins involved in actin dynamics, cell migration and adhesion plays key roles in prechondrogenic condensation by inducing collective adhesion and migration in cooperation with ATP oscillations. Copyright © 2014 John Wiley & Sons, Ltd.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-28
    Description: Indoor positioning remains an open problem, because it is difficult to achieve satisfactory accuracy within an indoor environment using current radio-based localization technology. In this study, we investigate the use of Indoor Messaging System (IMES) radio for high-accuracy indoor positioning. A hybrid positioning method combining IMES radio strength information and pedestrian dead reckoning information is proposed in order to improve IMES localization accuracy. For understanding the carrier noise ratio versus distance relation for IMES radio, the signal propagation of IMES radio is modeled and identified. Then, trilateration and extended Kalman filtering methods using the radio propagation model are developed for position estimation. These methods are evaluated through robot localization and pedestrian localization experiments. The experimental results show that the proposed hybrid positioning method achieved average estimation errors of 217 and 1846 mm in robot localization and pedestrian localization, respectively. In addition, in order to examine the reason for the positioning accuracy of pedestrian localization being much lower than that of robot localization, the influence of the human body on the radio propagation is experimentally evaluated. The result suggests that the influence of the human body can be modeled.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...