GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Over recent years, several PCR primers have been described to amplify genes encoding the structural subunits of ammonia monooxygenase (AMO) from ammonia-oxidizing bacteria (AOB). Most of them target amoA, while amoB and amoC have been neglected so far. This study compared the nucleotide sequence of 33 primers that have been used to amplify different regions of the amoCAB operon with alignments of all available sequences in public databases. The advantages and disadvantages of these primers are discussed based on the original description and the spectrum of matching sequences obtained. Additionally, new primers to amplify the almost complete amoCAB operon of AOB belonging to Betaproteobacteria (betaproteobacterial AOB), a primer pair for DGGE analysis of amoA and specific primers for gammaproteobacterial AOB, are also described. The specificity of these new primers was also evaluated using the databases of the sequences created during this study.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The effect of primer specificity for studying the diversity of ammonia-oxidizing betaproteobacteria (βAOB) was evaluated. βAOB represent a group of phylogenetically related organisms for which the 16S rRNA gene approach is especially suitable. We used experimental comparisons of primer performance with water samples, together with an in silico analysis of published sequences and a literature review of clone libraries made with four specific PCR primers for the βAOB 16S rRNA gene. With four aquatic samples, the primers NitA/NitB produced the highest frequency of ammonia-oxidizing-bacterium-like sequences compared to clone libraries with products amplified with the primer combinations βAMOf/βAMOr, βAMOf/Nso1255g, and NitA/Nso1225g. Both the experimental examination of ammonia-oxidizing-bacterium-specific 16S rRNA gene primers and the literature search showed that neither specificity nor sensitivity of primer combinations can be evaluated reliably only by sequence comparison. Apparently, the combination of sequence comparison and experimental data is the best approach to detect possible biases of PCR primers. Although this study focused on βAOB, the results presented here more generally exemplify the importance of primer selection and potential primer bias when analyzing microbial communities in environmental samples.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-24
    Description: The functional gene amoA was used to compare the diversity of ammonia-oxidizing bacteria (AOB) in the water column and sediment-water interface of the two freshwater lakes Plusssee and Schöhsee and the Baltic Sea. Nested amplifications were used to increase the sensitivity of amoA detection, and to amplify a 789-bp fragment from which clone libraries were prepared. The larger part of the sequences was only distantly related to any of the cultured AOB and is considered to represent new clusters of AOB within the Nitrosomonas/Nitrosospira group. Almost all sequences from the water column of the Baltic Sea and from 1-m depth of Schöhsee were related to different Nitrosospira clusters 0 and 2, respectively. The majority of sequences from Plusssee and Schöhsee were associated with sequences from Chesapeake Bay, from a previous study of Plusssee and from rice roots in Nitrosospira-like cluster A, which lacks sequences from Baltic Sea. Two groups of sequences from Baltic Sea sediment were related to clonal sequences from other brackish/marine habitats in the purely environmental Nitrosospira-like cluster B and the Nitrosomonas-like cluster. This confirms previous results from 16S rRNA gene libraries that indicated the existence of hitherto uncultivated AOB in lake and Baltic Sea samples, and showed a differential distribution of AOB along the water column and sediment of these environments
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: The community composition of denitrifying bacteria was studied in the stratified water column of Lake Kinneret. The nitrite reductase genes nirS and nirK were amplified by PCR from water samples taken at 1, 14, 19 and 22 m depth, which represent the epi-, meta- and hypolimnion of the lake. The PCR products were analyzed with terminal restriction fragment length polymorphism (T-RFLP) and clone libraries. The highest diversity of nirS denitrifying communities was observed at 1 m depth. According to the T-RFLP profiles and clone libraries of nirS products, 2 groups of denitrifiers were common to and dominant in all depths. Deduced protein sequences from one of these groups displayed low identity (77%) with other nirS sequences reported in GenBank. Denitrifying bacterial communities with nirK were most diverse at 22 m and showed highest similarity to those at 19 m depth. Sequences unrelated to nirK dominated the clone libraries from 1 m depth, suggesting that denitrifying bacteria with copper-containing nitrite reductase were less frequent at this depth. The results suggest that microorganisms with nirK and those with nirS respond differently to the environmental conditions in the stratified water column of Lake Kinneret.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: The genes and intergenic regions of the amoCAB operon were analyzed to establish their potential as molecular markers for analyzing ammonia-oxidizing betaproteobacterial (beta-AOB) communities. Initially, sequence similarity for related taxa, evolutionary rates from linear regressions, and the presence of conserved and variable regions were analyzed for all available sequences of the complete amoCAB operon. The gene amoB showed the highest sequence variability of the three amo genes, suggesting that it might be a better molecular marker than the most frequently used amoA to resolve closely related AOB species. To test the suitability of using the amoCAB genes for community studies, a strategy involving nested PCR was employed. Primers to amplify the whole amoCAB operon and each individual gene were tested. The specificity of the products generated was analyzed by denaturing gradient gel electrophoresis, cloning, and sequencing. The fragments obtained showed different grades of sequence identity to amoCAB sequences in the GenBank database. The nested PCR approach provides a possibility to increase the sensitivity of detection of amo genes in samples with low abundance of AOB. It also allows the amplification of the almost complete amoA gene, with about 300 bp more sequence information than the previous approaches. The coupled study of all three amo genes and the intergenic spacer regions that are under different selection pressure might allow a more detailed analysis of the evolutionary processes, which are responsible for the differentiation of AOB communities in different habitats.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-31
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-10-17
    Description: The maintenance of energetically costly flagella by bacteria in non-water-saturated media, such as soil, still presents an evolutionary conundrum. Potential explanations have focused on rare flooding events allowing dispersal. Such scenarios, however, overlook bacterial dispersal along mycelia as a possible transport mechanism in soils. The hypothesis tested in this study is that dispersal along fungal hyphae may lead to an increase in the fitness of flagellated bacteria and thus offer an alternative explanation for the maintenance of flagella even in unsaturated soils. Dispersal along fungal hyphae was shown for a diverse array of motile bacteria. To measure the fitness effect of dispersal, additional experiments were conducted in a model system mimicking limited dispersal, using Pseudomonas putida KT2440 and its nonflagellated ( fliM ) isogenic mutant in the absence or presence of Morchella crassipes mycelia. In the absence of the fungus, flagellar motility was beneficial solely under conditions of water saturation allowing dispersal, while under conditions limiting dispersal, the nonflagellated mutant exhibited a higher level of fitness than the wild-type strain. In contrast, in the presence of a mycelial network under conditions limiting dispersal, the flagellated strain was able to disperse using the mycelial network and had a higher level of fitness than the mutant. On the basis of these results, we propose that the benefit of mycelium-associated dispersal helps explain the persistence of flagellar motility in non-water-saturated environments.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-08
    Description: Bacterial endospores are highly specialized cellular forms that allow endospore-forming Firmicutes (EFF) to tolerate harsh environmental conditions. EFF are considered ubiquitous in natural environments, in particular, those subjected to stress conditions. In addition to natural habitats, EFF are often the cause of contamination problems in anthropogenic environments, such as industrial production plants or hospitals. It is therefore desirable to assess their prevalence in environmental and industrial fields. To this end, a high-sensitivity detection method is still needed. The aim of this study was to develop and evaluate an approach based on quantitative PCR (qPCR). For this, the suitability of functional genes specific for and common to all EFF were evaluated. Seven genes were considered, but only spo0A was retained to identify conserved regions for qPCR primer design. An approach based on multivariate analysis was developed for primer design. Two primer sets were obtained and evaluated with 16 pure cultures, including representatives of the genera Bacillus , Paenibacillus , Brevibacillus , Geobacillus , Alicyclobacillus , Sulfobacillus , Clostridium , and Desulfotomaculum , as well as with environmental samples. The primer sets developed gave a reliable quantification when tested on laboratory strains, with the exception of Sulfobacillus and Desulfotomaculum . A test using sediment samples with a diverse EFF community also gave a reliable quantification compared to 16S rRNA gene pyrosequencing. A detection limit of about 10 4 cells (or spores) per gram of initial material was calculated, indicating this method has a promising potential for the detection of EFF over a wide range of applications.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-18
    Description: Iron artifacts are common among the findings of archaeological excavations. The corrosion layer formed on these objects requires stabilization after their recovery, without which the destruction of the item due to physicochemical damage is likely. Current technologies for stabilizing the corrosion layer are lengthy and generate hazardous waste products. Therefore, there is a pressing need for an alternative method for stabilizing the corrosion layer on iron objects. The aim of this study was to evaluate an alternative conservation-restoration method using bacteria. For this, anaerobic iron reduction leading to the formation of stable iron minerals in the presence of chlorine was investigated for two strains of Desulfitobacterium hafniense (strains TCE1 and LBE). Iron reduction was observed for soluble Fe(III) phases as well as for akaganeite, the most troublesome iron compound in the corrosion layer of archaeological iron objects. In terms of biogenic mineral production, differential efficiencies were observed in assays performed on corroded iron coupons. Strain TCE1 produced a homogeneous layer of vivianite covering 80% of the corroded surface, while on the coupons treated with strain LBE, only 10% of the surface was covered by the same mineral. Finally, an attempt to reduce iron on archaeological objects was performed with strain TCE1, which led to the formation of both biogenic vivianite and magnetite on the surface of the artifacts. These results demonstrate the potential of this biological treatment for stabilizing archaeological iron as a promising alternative to traditional conservation-restoration methods. IMPORTANCE Since the Iron Age, iron has been a fundamental material for the building of objects used in everyday life. However, due to its reactivity, iron can be easily corroded, and the physical stability of the object built is at risk. This is particularly true for archaeological objects on which a potentially unstable corrosion layer is formed during the time the object is buried. After excavation, changes in environmental conditions (e.g., higher oxygen concentration or lower humidity) alter the stability of the corrosion layer and can lead to the total destruction of the object. In this study, we demonstrate the feasibility of an innovative treatment based on bacterial iron reduction and biogenic mineral formation to stabilize the corrosion layer and protect these objects.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...