GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Solomon, Evan A; Kastner, Miriam; Wheat, C Geoffrey; Jannasch, Hans W; Robertson, Gretchen; Davis, Earl E; Morris, Julie (2009): Long-term hydrogeochemical records in the oceanic basement and forearc prism at the Costa Rica subduction zone. Earth and Planetary Science Letters, 282(1-4), 240-251, https://doi.org/10.1016/j.epsl.2009.03.022
    Publication Date: 2024-01-09
    Description: Two sealed borehole hydrologic observatories (CORKs) were installed in two active hydrogeochemical systems at the Costa Rica subduction zone to investigate the relationship between tectonics, fluid flow, and fluid composition. The observatories were deployed during Ocean Drilling Program (ODP) Leg 205 at Site 1253, ~ 0.2 km seaward of the trench, in the upper igneous basement, and at Site 1255, ~ 0.5 km landward of the trench, in the décollement. Downhole instrumentation was designed to monitor formation fluid flow rates, composition, pressure, and temperature. The two-year records collected by this interdisciplinary effort constitute the first co-registered hydrological, chemical, and physical dataset from a subduction zone, providing critical information on the average and transient state of the subduction thrust and upper igneous basement. The continuous records at ODP Site 1253 show that the uppermost igneous basement is highly permeable hosting an average fluid flow rate of 0.3 m/yr, and indicate that the fluid sampled in the basement is a mixture between seawater (~ 50%) and a subduction zone fluid originating within the forearc (~ 50%). These results suggest that the uppermost basement serves as an efficient pathway for fluid expelled from the forearc that should be considered in models of subduction zone hydrogeology and deformation. Three transients in fluid flow rates were observed along the décollement at ODP Site 1255, two of which coincided with stepwise increases in formation pressure. These two transients are the result of aseismic slip dislocations that propagated up-dip from the seismogenic zone over the course of ~ 2 weeks terminating before reaching ODP Site 1255 and the trench. The nature and temporal behavior of strain and the associated hydrological response during these slow slip events may be an analog for the response of the seaward part of the subduction prism during or soon after large subduction zone earthquakes.
    Keywords: 170-1040C; 170-1041B; 170-1042B; 205-1253A; 205-1254A; Costa Rica margin, North Pacific Ocean; Costa Rica subduction complex, North Pacific Ocean; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Event label; Joides Resolution; Leg170; Leg205; Lithology/composition/facies; North Pacific Ocean; Ocean Drilling Program; ODP; Sample code/label; Strontium-87/Strontium-86 ratio
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 66 (1994), S. 3352-3361 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q06007, doi:10.1029/2010GC003424.
    Description: The Integrated Ocean Drilling Program (IODP) Hole 1301A on the eastern flank of Juan de Fuca Ridge was used in the first long-term deployment of microbial enrichment flow cells using osmotically driven pumps in a subseafloor borehole. Three novel osmotically driven colonization systems with unidirectional flow were deployed in the borehole and incubated for 4 years to determine the microbial colonization preferences for 12 minerals and glasses present in igneous rocks. Following recovery of the colonization systems, we measured cell density on the minerals and glasses by fluorescent staining and direct counting and found some significant differences between mineral samples. We also determined the abundance of mesophilic and thermophilic culturable organotrophs grown on marine R2A medium and identified isolates by partial 16S or 18S rDNA sequencing. We found that nine distinct phylotypes of culturable mesophilic oligotrophs were present on the minerals and glasses and that eight of the nine can reduce nitrate and oxidize iron. Fe(II)-rich olivine minerals had the highest density of total countable cells and culturable organotrophic mesophiles, as well as the only culturable organotrophic thermophiles. These results suggest that olivine (a common igneous mineral) in seawater-recharged ocean crust is capable of supporting microbial communities, that iron oxidation and nitrate reduction may be important physiological characteristics of ocean crust microbes, and that heterogeneously distributed minerals in marine igneous rocks likely influence the distribution of microbial communities in the ocean crust.
    Description: The subseafloor flow cell enrichment chambers were funded by a small grant from the Ocean Drilling Program. This work was also funded by NASA grant NNX08AO22G, NSF OCE 0727119 to C.G.W., NSF OCE 0452333 to S.M.S., and OCE‐0550713 and OCE‐0727952 to A.T.F., PSU, and OSU.
    Keywords: Juan de Fuca ; Basalt ; Iron oxidizers ; Nitrate reducers ; Olivine ; Subseafloor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...