GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-31
    Description: Shallow hydrothermal vents are of pivotal relevance for ocean biogeochemical cycles, including seawater dissolved heavy metals and trace elements as well as the carbonate system balance. The Kueishan Tao (KST) stratovolcano off Taiwan is associated with numerous hydrothermal vents emitting warm sulfur-rich fluids at so-called White Vents (WV) and Yellow Vent (YV) that impact the surrounding seawater masses and habitats. The morphological and biogeochemical consequences caused by a M5.8 earthquake and a C5 typhoon (“Nepartak”) hitting KST (12th May, and 2nd–10th July, 2016) were studied within a 10-year time series (2009–2018) combining aerial drone imagery, technical diving, and hydrographic surveys. The catastrophic disturbances triggered landslides that reshaped the shoreline, burying the seabed and, as a consequence, native sulfur accretions that were abundant on the seafloor disappeared. A significant reduction in venting activity and fluid flow was observed at the high-temperature YV. Dissolved Inorganic Carbon (DIC) maxima in surrounding seawater reached 3000–5000 µmol kg−1, and Total Alkalinity (TA) drawdowns were below 1500–1000 µmol kg−1 lasting for one year. A strong decrease and, in some cases, depletion of dissolved elements (Cd, Ba, Tl, Pb, Fe, Cu, As) including Mg and Cl in seawater from shallow depths to the open ocean followed the disturbance, with a recovery of Mg and Cl to pre-disturbance concentrations in 2018. The WV and YV benthic megafauna exhibited mixed responses in their skeleton Mg:Ca and Sr:Ca ratios, not always following directions of seawater chemical changes. Over 70% of the organisms increased skeleton Mg:Ca ratio during rising DIC (higher CO2) despite decreasing seawater Mg:Ca ratios showing a high level of resilience. KST benthic organisms have historically co-existed with such events providing them ecological advantages under extreme conditions. The sudden and catastrophic changes observed at the KST site profoundly reshaped biogeochemical processes in shallow and offshore waters for one year, but they remained transient in nature, with a possible recovery of the system within two years.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2023-07-11
    Description: We reconstructed the Indian Monsoon variability of the Earth's strongest hydrological system, at International Ocean Discovery Program (IODP) Expedition 353 Site U1448 in the Andaman Sea over the interval 6.24 to 4.91 Ma. We used high-resolution benthic and planktic foraminiferal carbon and oxygen isotopes and Mg/Ca measurements of the mixed layer foraminifer Trilobatus sacculifer to reconstruct the isotopic composition of seawater (δ¹⁸Osw) and the gradient between planktic and benthic foraminiferal δ¹³C.
    Keywords: 353-U1448A; 353-U1448B; AGE; Bay of Bengal; Calculated (Bemis et al., 1998); Calculated according to (Mohtadi et al. 2014); Calculated from Mg/Ca ratios (Anand et al., 2003); CDRILL; Cibicidoides wuellerstorfi, δ13C; Core drilling; Corrected; Depth, composite revised; DEPTH, sediment/rock; DSDP/ODP/IODP sample designation; Event label; Exp353; Foraminifera, benthic δ13C; Foraminifera, benthic δ18O; Indian Monsoon; Joides Resolution; Mass spectrometer; Mg/Ca paleothermometry; Miocene-Pliocene transition; Mixed layer temperature; MSPEC; Sample code/label; see Jöhnck et al. (2020); Size fraction; Species; Stable isotopes; Trilobatus sacculifer, Magnesium/Calcium ratio; Trilobatus sacculifer, δ13C; Trilobatus sacculifer, δ18O; Δδ13C, gradient; Δδ18O, gradient; δ18O, seawater, reconstructed
    Type: Dataset
    Format: text/tab-separated-values, 14200 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-10-09
    Description: We collected a suite of core top samples during R/V Sonne Cruise SO257 in May 2017 along the Western Australian Margin to monitor the variability of Southern Hemisphere tropical and subtropical sea surface hydrology. We additionally reconstructed sea surface temperature (SST), sea surface salinity (SSS) and δ18O seawater (δ18Osw) over the last 450 kyr in Site SO257-18548/U1482 and SO257-18571 located within and beyond the monsoonal rain belt.
    Keywords: Mg/Ca paleothermometry; Oxygen isotopes; SST
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-24
    Description: We collected a suite of core top samples during R/V Sonne Cruise SO257 in May 2017 along the southwestern front of the Indo‐Pacific Warm Pool (IPWP) to monitor the variability of Southern Hemisphere tropical and subtropical sea surface hydrology and to assess temperature and salinity reconstructions with data sets reflecting conditions in the post‐monsoonal season. In our core top samples, a steep increase in planktic δ18O, associated with a decrease in sea surface temperature (SST), indicates that the southwestern front of the IPWP is located between 23° and 24°S during austral fall. We additionally reconstructed SST, sea surface salinity ,and δ18O seawater (δ18Osw) over the last 450 kyr in two sediment successions located within and beyond the monsoonal rain belt. Our records show that SST was highly coherent and phase‐locked with atmospheric pCO2 during the last 450 kyr. The regional differences in the δ18Osw records reveal that the Western Australian Margin north of 15°S remained seasonally under the influence of IPWP water masses, even during glacials. The temporal variability in upper ocean hydrology along the Western Australian Margin is not directly coupled to local monsoonal precipitation, but is strongly affected by advective mixing of Indonesian Throughflow derived water masses.
    Description: Key Points: Southwest front of modern Indo‐Pacific Warm Pool (IPWP) during austral fall is located between 23° and 24°S. Western Australian Margin north of 15°S remained seasonally influenced by IPWP throughout past 450 kyr. Upper ocean hydrology off Western Australia represents an integrated signal of monsoonal precipitation and advective mixing.
    Description: China Scholarship Council
    Description: German Federal Ministry of Education and Research
    Keywords: ddc:551.46
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-07
    Description: We reconstructed the variability of the Earth's strongest hydrological system, the Indian monsoon, over the interval 6.24 to 4.91 Ma at International Ocean Discovery Program (IODP) Expedition 353 Site U1448 in the Andaman Sea. We integrated high-resolution benthic and planktic foraminiferal carbon and oxygen isotopes with Mg/Ca measurements of the mixed layer foraminifer Trilobatus sacculifer to reconstruct the isotopic composition of seawater (δ18Osw) and the gradient between planktic and benthic foraminiferal δ13C. A prominent increase in mixed layer temperatures of ~4°C occurred between 5.55 and 5.28 Ma, accompanied by a change from precession- to obliquity-driven variability in planktic δ18O and δ18Osw. We suggest that an intensified cross-equatorial transport of heat and moisture, paced by obliquity, led to increased summer monsoon precipitation during warm stages after 5.55 Ma. Transient cold stages were characterized by reduced mixed layer temperatures and summer monsoon failure, thus resembling late Pleistocene stadials. In contrast, an overall cooler background climate state with a strengthened biological pump prevailed prior to 5.55 Ma. These findings highlight the importance of internal feedback processes for the long-term evolution of the Indian monsoon.
    Keywords: 551.6 ; Indian monsoon ; Miocene-Pliocene transition ; Bay of Bengal ; Mg/Ca paleothermometry ; stable isotopes ; orbital forcing
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...