GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  EPIC3In: G. Wefer, S. Mulitza and V. Ratmeyer (Editors), The South Atlantic in the Late Quaternary. Springer, Berlin, Heidelberg, pp. 401-430
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: This study addresses deep pore water chemistry in a permeable intertidal sand flat at the NW German coast. Sulphate, dissolved organic carbon (DOC), nutrients, and several terminal metabolic products were studied down to 5 m sediment depth. By extending the depth domain to several meters, insights into the functioning of deep sandy tidal flats were gained. Despite the dynamic sedimentological conditions in the study area, the general depth profiles obtained in the relatively young intertidal flat sediments of some metres depth are comparable to those determined in deep marine surface sediments. Besides diffusion and lithology which control pore water profiles in most marine surface sediments, biogeochemical processes are influenced by advection in the studied permeable intertidal flat sediments. This is supported by the model setup in which advection has to be implemented to reproduce pore water profiles. Water exchange at the sediment surface and in deeper sediment layers converts these permeable intertidal sediments into a “bio-reactor” where organic matter is recycled, and nutrients and DOC are released. At tidal flat margins, a hydraulic gradient is generated, which leads to water flow towards the creekbank. Deep nutrient-rich pore waters escaping at tidal flat margins during low tide presumably form a source of nutrients for the overlying water column in the study area. Significant correlations between the inorganic products of terminal metabolism (NH4 + and PO4 3−) and sulphate depletion suggest sulphate reduction to be the dominant pathway of anaerobic carbon remineralisation. Pore water concentrations of sulphate, ammonium, and phosphate were used to elucidate the composition of organic matter degraded in the sediment. Calculated C:N and C:P ratios were supported by model results.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: Microbial activity in permeable tidal flat margin sediments is enhanced by two main processes. First, organic matter is supplied by rapid sedimentation at prograding tidal flat margins. Second, surface and deep pore water advection lead to a replenishment of the dissolved organic matter and sulfate pools. Increasing microbial activity towards the low water line is reflected in sulfate and methane profiles as well as in total cell numbers, sulfate reduction rates, and remineralization products. The impact of high sedimentation rates on pore water biogeochemistry is confirmed by inverse modeling reproducing the depth profiles obtained by measurements. In central parts of the tidal flats, low sedimentation rates and pore water flow velocities limit microbial activity despite the high availability of electron acceptors for microbial respiration such as sulfate. Therefore, tidal flat margins with high microbial activity are of special importance for budgeting biogeochemical cycling in tidal flat areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer-Verlag Berlin Heidelberg New York
    In:  EPIC3The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems, The South Atlantic in the Late Quaternary, Springer-Verlag Berlin Heidelberg New York, pp. 401-430, ISBN: 3-540-21028-8
    Publication Date: 2014-04-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Experimental Marine Biology and Ecology, ELSEVIER SCIENCE BV, 514-15(1-9), pp. 1-9, ISSN: 0022-0981
    Publication Date: 2019-03-21
    Description: Macrofaunal sediment reworking activity is a key driver of ecosystem functioning in marine systems. So far sediment reworking rates can only accurately be assessed by measurements as inference from community parameters is limited. In this case study we test the applicability of 2-D optical florescent sediment profile imaging (f-SPI) on multi corer type incubation cylinders. f-SPI has to date been applied to flat-surfaced (i.e. rectangular) cores only, while multi corer type incubation cylinders were analyzed by the spatially low resolved and invasive slicing technique. Here we apply both methods to cylindrical sediment cores (10 cm diameter). Cores were taken from by two common communities (i.e. Nucula-community and Amphiura-community) in the southern German Bight. Both f-SPI and the slicing technique showed similar vertical luminophore profiles. However the slicing technique found no significant differences between the two communities, whereas f-SPI showed significant differences for all investigated sediment reworking parameters: sediment reworking rate, non-locality index, mean weighted luminophore depth, and the maximal luminophore depth. Consequently, this may lead to different conclusions about the sediment reworking behaviors of the two communities. Likely the slicing method failed to detect significant differences between the Nucula- and Amphiura-community, owing to insufficient spatial accuracy. The f-SPI method, on the other hand, did not capture the full extent of maximal sediment reworking depth due to wall-effects. We conclude that both methods have specific drawbacks and advantages. While slicing is preferable when focusing on the absolute maximal sediment reworking depth especially with predominantly sessile communities, f-SPI is better suited to capture general sediment reworking patterns of most other communities. We demonstrate further that the bias, which is introduced by the distortion effect on imaging due to optical perspective and cylinder wall curvature of rounded cylinders using f-SPI, is negligible. Accordingly our results indicate that the distortion effects by curvature of the rounded cylinder walls will not cause underestimations of sediment reworking parameters in the f-SPI approach. Consequently f-SPI is suitable for the investigation of sediment reworking in natural communities by means of multi corer type samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3Estuarine Coastal and Shelf Science, 82, pp. 632-644
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    SPRINGER
    In:  EPIC3Geo-Marine Letters, SPRINGER, 30(5), pp. 477-492, ISSN: 0276-0460
    Publication Date: 2019-07-17
    Description: Pore water profiles from 24 stations in the South Atlantic (located in the Guinea, Angola, Cape, Guyana, and Argentine basins) show good correlations of oxygen and silicon, suggesting microbially mediated dissolution of biogenic silica. We used simple analytical transport and reaction models to show the tight coupling of the reconstructed process kinetics of aerobic respiration and silicon regeneration. A generic transport and reaction model successfully reproduced the majority of Si pore water profiles from aerobic respiration rates, confirming that the dissolution of biogenic silica (BSi) occurs proportionally to O 2 consumption. Possibly limited to well-oxygenated sediments poor in BSi, benthic Si fluxes can be inferred from O 2 uptake with satisfactory accuracy. Compared to aerobic respiration kinetics, the solubility of BSi emerged as a less influential parameter for silicon regeneration. Understanding the role of bacteria for silicon regeneration requires further investigations, some of which are outlined. The proposed aerobic respiration control of benthic silicon cycling is suitable for benthic–pelagic models. The empirical relation of BSi dissolution to aerobic respiration can be used for regionalization assessments and estimates of the silicon budget to increase the understanding of global primary and export production patterns.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...