GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2021-02-08
    Description: Highlights • Complete upper Albian to early Turonian climate archive in drilled core from Tarfaya Basin. • Eccentricity pacing of mid Cretaceous OAE isotope excursions. • MCE and OAE2 associated with climate cooling and sea level fall. Abstract A 325 m long continuous succession of uppermost Albian to lower Turonian pelagic (outer shelf) deposits was recovered from a new drill site in the central part of the Tarfaya Basin (southern Morocco). Natural gamma ray wireline logging, carbonate and organic carbon content, bulk carbonate and organic carbon stable isotopes and X-ray fluorescence (XRF)-scanner derived elemental distribution data in combination with planktonic foraminiferal biostratigraphy indicate complete recovery of the Cenomanian Stage. This exceptional sediment archive allows to identify orbitally driven cyclic sedimentation patterns and to evaluate the pacing of climatic events and regional environmental change across the Albian-Cenomanian boundary (ACB), the mid-Cenomanian Event (MCE) and Oceanic Anoxic Event 2 (OAE2) in the latest Cenomanian. The deposition of organic-rich sediments in the Tarfaya Basin, likely driven by upwelling of nutrient-rich water masses, started during the latest Albian and intensified in two major steps following the MCE and the onset of OAE2. The duration and structure of the MCE and OAE2 carbon isotope excursions exhibit striking similarities, suggesting common driving mechanisms and climate-carbon cycle feedbacks. Both events were also associated with eustatic sea level falls, expressed as prominent sequence boundaries in the Tarfaya Basin. Based on the 405 kyr signal imprinted on the Natural Gamma Ray (NGR) and XRF-scanner derived Log(Zr/Rb) records, we estimate the duration of the Cenomanian Stage to be 4.8 ± 0.2 Myr.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Progress in Earth and Planetary Science 5 (2018): 19, doi:10.1186/s40645-018-0167-8.
    Description: The Quaternary hemipelagic sediments of the Japan Sea are characterized by centimeter- to decimeter-scale alternation of dark and light clay to silty clay, which are bio-siliceous and/or bio-calcareous to a various degree. Each of the dark and light layers are considered as deposited synchronously throughout the deeper (〉 500 m) part of the sea. However, attempts for correlation and age estimation of individual layers are limited to the upper few tens of meters. In addition, the exact timing of the depositional onset of these dark and light layers and its synchronicity throughout the deeper part of the sea have not been explored previously, although the onset timing was roughly estimated as ~ 1.5 Ma based on the result of Ocean Drilling Program legs 127/128. Consequently, it is not certain exactly when their deposition started, whether deposition of dark and light layers was synchronous and whether they are correlatable also in the earlier part of their depositional history. The Quaternary hemipelagic sediments of the Japan Sea were drilled at seven sites during Integrated Ocean Drilling Program Expedition 346 in 2013. Alternation of dark and light layers was recovered at six sites whose water depths are 〉 ~ 900 m, and continuous composite columns were constructed at each site. Here, we report our effort to correlate individual dark layers and estimate their ages based on a newly constructed age model at Site U1424 using the best available paleomagnetic datum and marker tephras. The age model is further tuned to LR04 δ18O curve using gamma ray attenuation density (GRA) since it reflects diatom contents that are higher during interglacial high-stands. The constructed age model for Site U1424 is projected to other sites using correlation of dark layers to form a high-resolution and high-precision paleo-observatory network that allows to reconstruct changes in material fluxes with high spatio-temporal resolutions.
    Description: This work was supported by a grant from IODP Exp. 346 After Cruise Research Program, JAMSTEC, awarded to TR, IK, Irino T, Itaki T, ST, KY, SS, and KA and from JSPS KAKENHI grant number 16H01765 awarded to TR.
    Keywords: Quaternary sediments ; Japan Sea ; Inter-site correlation ; High-resolution age model ; IODP ; Expedition 346 ; U1424 ; U1425 ; U1426 ; U1430
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bretschneider, L., Hathorne, E. C., Bolton, C. T., Gebregiorgis, D., Giosan, L., Gray, E., Huang, H., Holbourn, A., Kuhnt, W., & Frank, M. Enhanced late miocene chemical weathering and altered precipitation patterns in the watersheds of the Bay of Bengal recorded by detrital clay radiogenic isotopes. Paleoceanography and Paleoclimatology, 36(9), (2021): e2021PA004252, https://doi.org/10.1029/2021PA004252.
    Description: The late Miocene was a period of declining CO2 levels and extensive environmental changes, which likely had a large impact on monsoon strength as well as on the weathering and erosion intensity in the South Asian Monsoon domain. To improve our understanding of these feedback systems, detrital clays from the southern Bay of Bengal (International Ocean Discovery Program Site U1443) were analyzed for the radiogenic isotope compositions of Sr, Nd, and Pb to reconstruct changes in sediment provenance and weathering regime related to South Asian Monsoon rainfall from 9 to 5 Ma. The 100 kyr resolution late Miocene to earliest Pliocene record suggests overall low variability in the provenance of clays deposited on the Ninetyeast Ridge. However, at 7.3 Ma, Nd and Pb isotope compositions indicate a switch to an increased relative contribution from the Irrawaddy River (by ∼10%). This shift occurred during the global benthic δ13C decline, and we suggest that global cooling and increasing aridity resulted in an eastward shift of precipitation patterns leading to a more focused erosion of the Indo-Burman Ranges. Sr isotope compositions were decoupled from Nd and Pb isotope signatures and became more radiogenic between 6 and 5 Ma. Grassland expansion generating thick, easily weatherable soils may have led to an environment supporting intense chemical weathering, which is likely responsible for the elevated detrital clay 87Sr/86Sr ratios during this time. This change in Sr isotope signatures may also have contributed to the late Miocene increase of the global seawater Sr isotope composition.
    Description: This research used samples and data provided by the International Ocean Discovery Program and was funded by the German Research Foundation (DFG) (grants HA 5751/6-1 & -2). C. T. Bolton acknowledges funding from the French ANR project iMonsoon (ANR-16-CE01-0004-01) and IODP France. W. Kuhnt acknowledges funding from the DFG (grant Ku649/36-1).
    Keywords: Clay radiogenic isotopes ; Late Miocene ; South Asian Monsoon ; Chemical weathering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bretschneider, L., Hathorne, E. C., Huang, H., Luebbers, J., Kochhann, K. G. D., Holbourn, A., Kuhnt, W., Thiede, R., Gebregiorgis, D., Giosan, L., & Frank, M. Provenance and weathering of clays delivered to the Bay of Bengal during the middle Miocene: linkages to tectonics and monsoonal climate. Paleoceanography and Paleoclimatology, 36(2), (2021): e2020PA003917, https://doi.org/10.1029/2020PA003917.
    Description: Tectonics and regional monsoon strength control weathering and erosion regimes of the watersheds feeding into the Bay of Bengal, which are important contributors to global climate evolution via carbon cycle feedbacks. The detailed mechanisms controlling the input of terrigenous clay to the Bay of Bengal on tectonic to orbital timescales are, however, not yet well understood. We produced orbital‐scale resolution geochemical records for International Ocean Discovery Program Site U1443 (southern Bay of Bengal) across five key climatic intervals of the middle to late Miocene (15.8–9.5 Ma). Our new radiogenic Sr, Nd, and Pb isotope time series of clays transported to the Ninetyeast Ridge suggest that the individual contributions from different erosional sources overall remained remarkably consistent during the Miocene despite major tectonic reorganizations in the Himalayas. On orbital timescales, however, high‐resolution data from the five investigated intervals show marked fluctuations of all three isotope systems. Interestingly, the variability was much higher within the Miocene Climatic Optimum (around 16–15 Ma) and across the major global cooling (~13.9–13.8 Ma) until ~13.5 Ma, than during younger time intervals. This change is attributed to a major restriction on the supply of High Himalayan erosion products due to migration of the peak precipitation area toward the frontal domains of the Himalayas and the Indo‐Burman Ranges. The transient excursions of the radiogenic isotope signals on orbital timescales most likely reflect climatically driven shifts in monsoon strength.
    Description: This research used samples and data provided by the International Ocean Discovery Program and was funded by the German Research Foundation (DFG) (grants HA 5751/6‐1 and HA 5751/6‐2, KU 649/36‐1, and TH 1317‐8 and TH 1317‐9). Open access funding enabled and organized by Projekt DEAL.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-24
    Keywords: 363-U1483; AGE; Aluminium; Calcium; COMPCORE; Composite Core; DEPTH, sediment/rock; Exp363; IMAGES; Integrated Ocean Drilling Program / International Ocean Discovery Program; International Marine Global Change Study; IODP; Joides Resolution; North west Australian continental margin; Potassium; X-ray fluorescence core scanner (XRF)
    Type: Dataset
    Format: text/tab-separated-values, 6120 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-24
    Keywords: 363-U1483; AGE; COMPCORE; Composite Core; DEPTH, sediment/rock; Exp363; IMAGES; Integrated Ocean Drilling Program / International Ocean Discovery Program; International Marine Global Change Study; IODP; Isotope ratio mass spectrometry; Joides Resolution; North west Australian continental margin; Planulina wuellerstorfi, δ18O
    Type: Dataset
    Format: text/tab-separated-values, 174 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-24
    Keywords: 363-U1483; AGE; Aluminium; Calcium; Chlorine; COMPCORE; Composite Core; DEPTH, sediment/rock; Exp363; IMAGES; Integrated Ocean Drilling Program / International Ocean Discovery Program; International Marine Global Change Study; IODP; Iron; Joides Resolution; North west Australian continental margin; Potassium; Titanium; X-ray fluorescence core scanner (XRF)
    Type: Dataset
    Format: text/tab-separated-values, 12240 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lyle, Mitchell W; Olivarez Lyle, Annette; Gorgas, T J; Holbourn, Ann E; Westerhold, Thomas; Hathorne, Ed C; Kimoto, Katsunori; Yamamoto, Shinya (2012): Data report: raw and normalized elemental data along the Site U1338 splice from X-ray flourescence scanning. In: Pälike, H; Lyle, M; Nishi, H; Raffi, I; Gamage, K; Klaus, A; and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.)., 320/321, https://doi.org/10.2204/iodp.proc.320321.203.2012
    Publication Date: 2023-04-25
    Description: We used X-ray fluorescence (XRF) scanning on Site U1338 sediments from Integrated Ocean Drilling Program Expedition 321 to measure sediment geochemical compositions at 2.5 cm resolution for the 450 m of the Site U1338 spliced sediment column. This spatial resolution is equivalent to ~2 k.y. age sampling in the 0-5 Ma section and ~1 k.y. resolution from 5 to 17 Ma. Here we report the data and describe data acquisition conditions to measure Al, Si, K, Ca, Ti, Fe, Mn, and Ba in the solid phase. We also describe a method to convert the data from volume-based raw XRF scan data to a normalized mass measurement ready for calibration by other geochemical methods. Both the raw and normalized data are reported along the Site U1338 splice.
    Keywords: 321-U1338; COMPCORE; Composite Core; Exp321; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Joides Resolution; Pacific Equatorial Age Transect II / Juan de Fuca
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Holbourn, Ann E; Kuhnt, Wolfgang; Lyle, Mitchell W; Schneider, Leah; Romero, Oscar E; Andersen, Nils (2014): Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology, 42(1), 19-22, https://doi.org/10.1130/G34890.1
    Publication Date: 2023-05-12
    Description: During the middle Miocene, Earth's climate transitioned from a relatively warm phase (Miocene climatic optimum) into a colder mode with re-establishment of permanent ice sheets on Antarctica, thus marking a fundamental step in Cenozoic cooling. Carbon sequestration and atmospheric CO2 drawdown through increased terrestrial and/or marine productivity have been proposed as the main drivers of this fundamental transition. We integrate high-resolution (1-3 k.y.) benthic stable isotope data with XRF-scanner derived biogenic silica and carbonate accumulation estimates in an exceptionally well-preserved sedimentary archive, recovered at Integrated Ocean Drilling Program Site U1338, to reconstruct eastern equatorial Pacific productivity variations and to investigate temporal linkages between high- and low-latitude climate change over the interval 16-13 Ma. Our records show that the climatic optimum (16.8-14.7 Ma) was characterized by high amplitude climate variations, marked by intense perturbations of the carbon cycle. Episodes of peak warmth at (southern hemisphere) insolation maxima coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. A switch to obliquity-paced climate variability after 14.7 Ma concurred with a general improvement in carbonate preservation and the onset of stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma. We find that two massive increases in opal accumulation at ~14.0 and ~13.8 Ma occurred just before and during the final and most prominent cooling step, supporting the hypothesis that enhanced siliceous productivity in the eastern equatorial Pacific contributed to CO2 drawdown.
    Keywords: 321-U1338; COMPCORE; Composite Core; Exp321; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Joides Resolution; Pacific Equatorial Age Transect II / Juan de Fuca
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Holbourn, Ann E; Kuhnt, Wolfgang; Kochhann, Karlos Guilherme Diemer; Andersen, Nils; Meier, K J Sebastian (2015): Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum. Geology, 43(2), 123-126, https://doi.org/10.1130/G36317.1
    Publication Date: 2023-05-12
    Description: The Miocene Climatic Optimum (~17-14.7 Ma) represents one of several major interruptions in the long-term cooling trend of the past 50 million years. To date, the processes driving high-amplitude climate variability and sustaining global warmth during this remarkable interval remain highly enigmatic. We present high-resolution benthic foraminiferal and bulk carbonate stable isotope records in an exceptional, continuous, carbonate-rich sedimentary archive (Integrated Ocean Drilling Program Site U1337, eastern equatorial Pacific Ocean), which offer a new view of climate evolution over the onset of the Climatic Optimum. A sharp decline in d18O and d13C at ~16.9 Ma, contemporaneous with a massive increase in carbonate dissolution, demonstrates that abrupt warming was coupled to an intense perturbation of the carbon cycle. The rapid recovery in d13C at ~16.7 Ma, ~200 k.y. after the beginning of the MCO, marks the onset of the first carbon isotope maximum within the long-lasting "Monterey Excursion". These results lend support to the notion that atmospheric pCO2 variations drove profound changes in the global carbon reservoir through the Climatic Optimum, implying a delicate balance between changing CO2 fluxes, rates of silicate weathering and global carbon sequestration. Comparison with a high-resolution d13C record spanning the onset of the Cretaceous Oceanic Anoxic Event 1a (~120 Ma ago) reveals common forcing factors and climatic responses, providing a long-term perspective to understand climate-carbon cycle feedbacks during warmer periods of Earth's climate with markedly different atmospheric CO2 concentrations.
    Keywords: 321-U1337; COMPCORE; Composite Core; Exp321; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Joides Resolution; Pacific Equatorial Age Transect II / Juan de Fuca
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...