GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-27
    Description: Abrupt fluid emissions from shallow marine sediments pose a threat to seafloor installations like wind farms and offshore cables. Quantifying such fluid emissions and linking pockmarks, the seafloor manifestations of fluid escape, to flow in the sub‐seafloor remains notoriously difficult due to an incomplete understanding of the underlying physical processes. Here, using a compositional multi‐phase flow model, we test plausible gas sources for pockmarks in the south‐eastern North Sea, which recent observations suggest have formed in response to major storms. We find that the mobilization of pre‐existing gas pockets is unlikely because free gas, due to its high compressibility, damps the propagation of storm‐induced pressure changes deeper into the subsurface. Rather, our results point to spontaneous appearance of a free gas phase via storm‐induced gas exsolution from pore fluids. This mechanism is primarily driven by the pressure‐sensitivity of gas solubility, and the appearance of free gas is largely confined to sediments in the vicinity of the seafloor. We show that in highly permeable sediments containing gas‐rich pore fluids, wave‐induced pressure changes result in the appearance of a persistent gas phase. This suggests that seafloor fluid escape structures are not always proxies for overpressured shallow gas and that periodic seafloor pressure changes can induce persistent free gas phase to spontaneously appear.
    Description: Plain Language Summary: Thousands of pockmarks, circular depressions in the seafloor, were reported in North Sea, presumably formed in response to wave motions during major storms. It has been hypothesized that these pockmarks formed as pre‐existing shallow free‐gas pockets were mobilized by pressure changes of the waves. However, mechanisms that could have mobilized free‐gas are not yet constrained. Moreover, large scale free‐gas accumulations have not been reported in this region, and therefore, commonly invoked mechanisms like tensile failure and breaching of capillary seals are hard to justify as they rely on the presence of pre‐existing gas pockets. Here, through modeling studies, we tackle the question of the source of the observed free‐gas. Our study consists of two parts: First, assuming that some hitherto unknown shallow free‐gas pocket is indeed present, we test whether storm‐induced pressure changes could breach capillary seals. We find that free‐gas damps pressure changes due to its high compressibility, making the mobilization of pre‐existing gas unlikely. In the second part, we propose an alternative mechanism where free‐gas spontaneously appears due to exsolution from pore‐fluids. We test the feasibility of this mechanism and show how periodic pressure changes can lead to a persistent gas phase, that could explain the elusive gas source linked to these pockmarks.
    Description: Key Points: Storm‐induced pressure changes can lead to spontaneous appearance of free gas phase near the seafloor. This process is driven by pressure‐sensitive phase instabilities. This mechanism could help explain elusive gas sources in recently observed pockmarks in the North Sea.
    Description: Aker BP (AkerBP) http://dx.doi.org/10.13039/100016998
    Description: Deutsche Forschungsgemeinschaft, DFG
    Keywords: ddc:550 ; pockmarks ; storm related pockmarks ; spontaneous free gas ; gas source ; modeling
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-15
    Description: This study explores the structural and thermal evolution of the Ghana transform margin. The main objective is to explore how the opening of the Atlantic Ocean and subsequent interaction with the Mid-Atlantic Ridge (MAR) has affected the margin's structural and thermal evolution. Two representative evolution scenarios are described: a reference case that neglects the influence of continental breakup and a second scenario that accounts for a possible heat influx during the passage of the MAR as well as magmatic underplating. These two scenarios have further been analysed for the implications for the hydrocarbon potential of the region. The scenario analysis builds on a suite of 2D realizations performed with TECMOD2D, modelling software for automated basin reconstructions. As the observed stratigraphy is input, the structural and thermal evolution of the basin is automatically reconstructed. This is achieved through the coupling of a lithosphere scale forward model with an inverse algorithm for model parameter optimization. We find that lateral heat transport from the passing MAR in combination with flexure of the lithosphere can explain the observed uplift of the margin. These results were obtained for a broken plate elasticity solution with a relative large value for the effective elastic thickness (Te=15) and necking level (15 km). Lateral heat flow from oceanic lithosphere is clearly visible in elevated basement heat flow values up to 50 km away from the ocean–continent transition (OCT). This influx of heat does not seem to have affected the maturation history along the margin significantly. Only the deepest sediments close to the OCT show slightly elevated vitrinite reflectance in simulations that account for the passage of the MAR. In conclusion, it appears that that lateral heat transport from the oceanic lithosphere is instrumental in shaping the Ghana transform margin but seems to have only limited control on the maturation history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Highlights • Determination of the tectonomagmatic evolution of the NW Atlantic • Mapping of the breakup-related magmatism using the vocanostratigraphy concept • Mapping of the magnetic and gravimetric crustal domain patterns and their boundaries using integrated SGM method • Analyses of seabed and onshore samples and field analogues work • New plate tectonic reconstruction for the NW Atlantic Abstract Passive margins are the locus of tectonic and magmatic processes leading to the formation of highly variable along-strike and conjugate margins structures. Using extensive new seismic, gravity, and magnetic datasets, complemented by seabed samples and field work, we investigate the tectonomagmatic evolution of the northwest (NW) Atlantic where breakup-related igneous rocks were emplaced during several Paleogene events associated with lithospheric stretching, continental breakup, and the formation of new oceanic basins. Interpretational methods include integrated seismic-gravity-magnetic (SGM) interpretation and seismic volcanostratigraphy. In addition, seabed and field samples were collected and analyzed to constrain the basin stratigraphy, hydrocarbon potential, and the geochronology and geochemistry of the volcanic sequences. Offshore, 2D seismic data reveal several Seaward Dipping Reflector (SDR) wedges and escarpments in the Labrador Sea, Davis Strait, and Baffin Bay. Onshore, eastward prograding foreset-bedded hyaloclastite delta deposits and overlying horizontal lava successions outcrop on Nuussuaq. These hyaloclastites and lava successions are world class analogues to the Lava Delta and Landward Flows volcanic seismic facies units identified offshore. Our mapping results document an aerial extent of the Paleogene breakup-related volcanics of 0.3 × 106 km2, with an estimated volume of 0.5–0.6 × 106 km3. Basalt samples recovered by dredging the Upernavik Escarpment have late Paleocene to/early Eocene ages, whereas the sedimentary samples provide an excellent seismic tie with the stratigraphy and the geology in this frontier area. From the integrated SGM interpretation, we identify a rapidly thinning crust and changes in top and intra-basement seismic reflection characteristics in the oceanic domain correlated with transition between different magnetic domains. The mapping results were subsequently integrated in a plate tectonic model. The plate tectonic reconstruction and basalt geochronology suggest that the majority of the volcanism in the NW Atlantic occurred between ~62 and ~58 Ma, associated with an increased spreading rate in the Labrador Sea, starting from the onset of the Selandian (~61.6 Ma). A change in the spreading direction during the Eocene (~56 Ma), synchronously with a shift of volcanic activity from the NW to the NE Atlantic, correspond to a northward drift of Greenland and the initiation of the Eurekan Orogeny. Finally, our interpretations reveal a complex rift configuration along the NW Atlantic conjugate margins both prior to and during breakup.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...