GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2010. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 52 (2010): 228-235.
    Description: A new and unique radiocarbon accelerator mass spectrometry (AMS) facility has been constructed at the Woods Hole Oceanographic Institution. The defining characteristic of the new system is its large-gap optical elements that provide a larger-than-standard beam acceptance. Such a system is ideally suited for high-throughput, high-precision measurements of 14C. Details and performance of the new system are presented.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2007. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 49 (2007): 301-306.
    Description: We report on 2 recent developments in an ongoing program of characterizing and improving the National Electrostatics Corp. (NEC) MC-SNICS ion source at University of California (UC) Irvine’s Keck AMS laboratory. First, we have investigated the possibility of modifying a large-body (134-sample) MC-SNICS to incorporate the UC Irvine Cs oven and vacuum-insulated Cs feed tube, which provide better confinement of Cs than the standard NEC setup. In our 40-sample source, the feed tube enters the source housing directly below the ionizer assembly. This area cannot be accessed for machining on the 134-sample source, but we have successfully tested a modified geometry where the delivery tube enters the body via the source end flange. Second, we recently installed a second beam profile monitor in the injection line of our spectrometer to allow us to make online emittance measurements. At full output (150 μA of C– at 55 keV), the emittance of our source at 8 kV sputtering voltage is approximately 40π mm mrad.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259 (2007): 83-87, doi:10.1016/j.nimb.2007.01.189.
    Description: A gas-accepting microwave-plasma ion source is being developed for continuous-flow Accelerator Mass Spectrometry (AMS). Characteristics of the ion source will be presented. Schemes for connecting a gas or liquid chromatograph to the ion source will also be discussed.
    Keywords: Ion source ; Accelerator mass spectrometry
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...