GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 61 (1989), S. 327-345 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract The visual system of the fly is able to extract different types of global retinal motion patterns as may be induced on the eyes during different flight maneuvers and to use this information to control visual orientation. The mechanisms underlying these tasks were analyzed by a combination of quantitative behavioral experiments on tethered flying flies (Musca domestica) and model simulations using different conditions of oscillatory large-field motion and relative motion of different segments of the stimulus pattern. Only torque responses about the vertical axis of the animal were determined. The stimulus patterns consisted of random dot textures (“Julesz patterns”) which could be moved either horizontally or vertically. Horizontal rotatory large-field motion leads to compensatory optomotor turning responses, which under natural conditions would tend to stabilize the retinal image. The response amplitude depends on the oscillation frequency: It is much larger at low oscillation frequencies than at high ones. When an object and its background move relative to each other, the object may, in principle, be discriminated and then induce turning responses of the fly towards the object. However, whether the object is distinguished by the fly depends not only on the phase relationship between object and background motion but also on the oscillation frequency. At all phase relations tested, the object is detected only at high oscillation frequencies. For the patterns used here, the turning responses are only affected by motion along the horizontal axis of the eye. No influences caused by vertical motion could be detected. The experimental data can be explained best by assuming two parallel control systems with different temporal and spatial integration properties: TheLF-system which is most sensitive to coherent rotatory large-field motion and mediates compensatory optomotor responses mainly at low oscillation frequencies. In contrast, theSF-system is tuned to small-field and relative motion and thus specialized to discriminate a moving object from its background; it mediates turning responses towards objects mainly at high oscillation frequencies. The principal organization of the neural networks underlying these control systems could be derived from the characteristic features of the responses to the different stimulus conditions. The input to the model circuits responsible for the characteristic sensitivity of the SF-system to small-field and relative motion is provided by retinotopic arrays of local movement detectors. The movement detectors are integrated by a large-field element, the output cell of the network. The synapses between the detectors and the output cells have nonlinear transmission characteristics. Another type of large-field elements (“pool cells”) which respond to motion in front of both eyes and have characteristic direction selectivities are assumed to interact with the local movement detector channels by inhibitory synapses of the shunting type, before the movement detectors are integrated by the output cells. The properties of the LF-system can be accounted for by similar model circuits which, however, differ with respect to the transmission characteristic of the synapses between the movement detectors and the output cell; moreover, their pool cells are only monocular. This type of network, however, is not necessary to account for the functional properties of the LF-system. Instead, intrinsic properties of single neurons may be sufficient. Computer simulations of the postulated mechanisms of the SF-and LF-system reveal that these can account for the specific features of the behavioral responses under quite different conditions of coherent large-field motion and relative motion of different pattern segments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 53 (1986), S. 285-306 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract This paper investigates the problem of spontaneous pattern discrimination by the visual system of the fly. The indicator for discrimination and attractivity of a pattern is the yaw torque of a test fly. It is shown that the pattern discrimination process may be treated as a special (“degenerate”) case of figureground discrimination which has been described in detail in earlier publications. Decisive for the discrimination process is the fact that pattern discrimination by the fly is mediated by motion detectors which respond not only a pattern velocity but also to structural properties of pattern contrast. This is demonstrated by the transition from the existing twodimensional array of motion detectors to a continuous detector field which enabled us to calculate instantaneous detector responses to instationary pattern motion. The new approach, together with the special theory for figure-ground discrimination, is then applied to predict spontaneous discriminations of onedimensional periodic patterns. It is shown that predictions and experimental results are in good agreement. The second set of discrimination experiments deals with two dimensional dot patterns for which a quantitative theory is not yet available. However, it is shown that the attractivity of a dot pattern crucially depends on both the orientation and the direction of motion relative to the fly's eyes. If the contrast of a moving dot elicits an event in a motion detector which through the detector's time constant leads to an interference with an event received by a preceeding dot, the attractivity of the dot pattern is diminished. In the discussion relations are drawn between the concepts of pattern discrimination in honey bees and the theoretical aspects of discrimination put forward in this paper. It is briefly discussed why a two-dimensional motion detector theory might become the key for an understanding of pattern categories like “figural intensity” and “figural quality”.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...