GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Braugerste
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (32 Seiten, 1,80 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 0315960B. - Verbund-Nummer01094325 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Biomasseproduktion
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (21 Seiten, 2,07 MB) , Diagramme
    Language: German
    Note: Engl. Berichtbl. u.d.T.: Final report of subproject GS1 - "Automated acquisition and genetic analysis of quantitative drought tolerance components in spring barley" , Förderkennzeichen BMBF 0315530E. - Verbund-Nr. 01074436 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Forschungsbericht ; Gerste ; Reis
    Description / Table of Contents: Barley, rice, genome analysis, synteny, sequence analysis
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource ([26] S., 0,92 MB) , graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 0312280 A , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Forschungsbericht ; Kulturpflanzen ; Genbibliothek
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (69 S., 6,01 MB) , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 0312830. - Literaturverz. - Engl. Titel: Establishment of the federal ex situ genebank for agricultural and horticultural crop plants: merging the genebanks of the IPK and the BAZ Braunschweig , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Forschungsbericht ; Malz ; Gerste ; Sortenwahl
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (41 S., 1,61 MB)
    Language: English
    Note: Förderkennzeichen BMBF 0313125A , Unterschiede zwischen der elektronischen Ressource und dem gedruckten Dokument können nicht ausgeschlossen werden , Systemvoraussetzungen: Acrobat reader. , Text engl.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Life sciences. ; Electronic books.
    Description / Table of Contents: This book shows the pivotal role played by genomics in order to mine germplasm collections, elucidate gene function, identify superior alleles and, ultimately, release improved cultivars. It features a number of compelling case studies and examples.
    Type of Medium: Online Resource
    Pages: 1 online resource (711 pages)
    Edition: 1st ed.
    ISBN: 9789400775725
    DDC: 581.35
    Language: English
    Note: Intro -- Foreword -- Foreword -- Preface -- Contents -- Contributors -- Part I Managing Genetic Resources -- Chapter 1 Building a Global Plant Genetic Resources System -- 1.1 Introduction: Global Situation -- 1.1.1 World Population, Hunger and Malnutrition -- 1.1.2 Food Production Situation -- 1.1.3 Climate Change -- 1.2 How can Agriculture Meet Those Challenges? -- 1.2.1 Changes Needed in Agricultural Systems -- 1.2.2 Use of Genetic Diversity and Agrobiodiversity -- 1.2.3 Genetic Resources in Details -- 1.3 A Global System for the Conservation and Sustainable Use of Plant Genetic Resources -- 1.3.1 Today's Situation -- 1.3.2 An Evolving Global System: Some Historical References -- 1.3.3 Elements of a Global System -- 1.3.3.1 The Policy Elements -- 1.3.3.2 The Technical Elements -- Collaborative activities -- 1.3.3.3 The Financial Elements and Mechanisms -- 1.4 Conclusion -- References -- Chapter 2 Genomic Approaches and Intellectual Property Protection for Variety Release: A Perspective from the Private Sector -- 2.1 Critical Needs to Increase Genetic Gain -- 2.2 Intellectual Property Protection -- 2.2.1 Methods of IPP Used in Plant Breeding -- 2.3 Technical Aspects of Obtaining IPP -- 2.3.1 Concerns About the Use of Molecular Markers to Describe Varieties de novo -- 2.3.2 Concerns About the Use of Phenotypic Characteristics to Describe Varieties de novo -- 2.4 Improving the DUS process: The rationale for Change to the Use of Molecular Characteristics -- 2.4.1 Criteria Required for the Development of Standardized Procedures for DUS -- 2.4.2 Evaluation of SNPs and Development of Standardized Procedures for DUS, EDV, and Variety Identification in Maize -- 2.5 Conclusions -- References -- Chapter 3 The Use of Molecular Marker Data to Assistin the Determination of Essentially Derived Varieties -- 3.1 Introduction. , 3.2 Main Objectives for Introducing and Implementing the EDV Concept -- 3.2.1 Who Determines EDV Status? -- 3.2.2 Why Have Breeders Taken the Initiative to Help Determine What Constitutes an EDV? -- 3.2.3 How is EDV Status Determined? -- 3.3 Predominant Derivation -- 3.4 Measure of Conformity: A Clear Starting Point -- 3.5 The Use of Molecular Markers to Help Determine EDV Status -- 3.5.1 What Degree of Similarity is Required to Determine that a Variety is ``Essentially Derived''? -- 3.5.2 Using Molecular Markers to Help Determine Essential Derivation in Maize: A Case Study -- 3.6 Ruling by the Court of Appeals, The Hague in Danziger Flower Farm vs. Astee Flowers on Technical Issues -- 3.7 Concluding Comments -- References -- Chapter 4 Application of Molecular Markers in Spatial Analysis to Optimize In Situ Conservation of Plant Genetic Resources -- 4.1 Introduction -- 4.2 Application of Molecular Markers to Optimize In Situ Conservation -- 4.3 Geospatial Analysis Techniques for Mapping Molecular Genetic Diversity -- 4.4 Case Study: Climate Change Impact on Cherimoya: Microsatellite Diversity and its Distribution Currentlyand in the Future -- 4.4.1 Introduction -- 4.4.2 Methods -- 4.4.2.1 Sampling and SSR Analysis -- 4.4.2.2 Spatial Analysis -- 4.4.3 Results and Discussion -- References -- Chapter 5 Historical and Prospective Applications of `Quantitative Genomics' in UtilisingGermplasm Resources -- 5.1 Introduction -- 5.2 The Pedigree Era -- 5.2.1 The Infinitesimal Model -- 5.2.2 The Concept of Breeding Values -- 5.2.3 Selection Indices -- 5.2.4 Best Linear Unbiased Prediction (BLUP) -- 5.3 The Molecular Era -- 5.3.1 QTL Mapping -- 5.3.2 The Candidate Gene Approach -- 5.3.3 Gene Introgression and QTL Pyramiding -- 5.4 The Genomic Era -- 5.4.1 Genome-Wide Selection -- 5.4.2 Stepwise Regression, BLUP and the Bayesian Alphabet. , 5.4.3 How Many Markers Do We Need? -- 5.4.4 The Use of Low Density SNP Chips -- 5.4.5 Training Population Size and Design -- 5.4.6 Marker Assisted Recurrent Selection (MARS) -- 5.4.7 Maintaining Genetic Diversity -- 5.5 GWS or MAS/MARS? -- References -- Part II Platforms and Approaches to Investigate Plant Genetic Resources -- Chapter 6 High-throughput SNP Profiling of Genetic Resources in Crop Plants Using Genotyping Arrays -- 6.1 Introduction -- 6.2 Identification of SNPs -- 6.2.1 Transcriptome Sequencing -- 6.2.2 Reduced Complexity Sequencing -- 6.2.3 Whole Genome Sequencing -- 6.3 Selection of SNPs for a Genotyping Array -- 6.4 SNP Calling Based on Array Data -- 6.5 Analysis of SNP Genotyping Data from a Large Array -- 6.6 Large SNP arrays in crop plants and examples for their use -- 6.6.1 Availability of Large Genotyping Arrays for Crop Plants -- 6.6.2 Examples for the Use of Large Genotyping Arrays for the Characterization of Plant Germplasm and Varieties -- 6.7 Summary and Future Trends -- References -- Chapter 7 Paleogenomics as a Guide for Traits Improvement -- 7.1 Introduction -- 7.1.1 Genome Sequences Available and Sequencing Strategies -- 7.1.1.1 Genome Sequencing Strategies -- 7.1.1.2 Released Plant Genome Sequences -- 7.1.2 Comparative Genomics Methods, Data and Online Tools -- 7.1.2.1 Comparative Genomics Parameters and Standards -- 7.1.2.2 Plant Synteny Viewer Tools -- 7.1.3 Plant Genome Ancestors and Reconstructed Karyotypes -- 7.1.3.1 Plant Genome Syntenies -- 7.1.3.2 Plant Genome Duplications -- 7.1.3.3 Ancestral Plant Karyotypes -- 7.1.3.4 Paleohistorical Shuffling Events -- 7.1.3.5 Structural and Functional Consequences of Evolution -- 7.1.4 CAr aNd Derived COS for Genetic and Physical Mapping -- 7.1.4.1 Computed Gene Order in Complex Non-Sequenced Genomes -- 7.1.4.2 Universal Conserved Orthologous Set (COS) markers. , 7.1.4.3 Strategy of Physical and Genetic Mapping from Ancestral Karyotypes -- 7.1.5 Complex Traits Dissection -- 7.1.5.1 Examples of Conserved and Non-Conserved Traits/Genes in Grasses -- 7.1.5.2 Comparative Genomics-Based Trait Dissection in Grasses -- 7.1.5.3 From Paleogenomics Data to Traits Improvement -- 7.2 Future ChalLenges -- References -- Chapter 8 Non-invasive Phenotyping Methodologies Enable the Accurate Characterization of Growth and Performance of Shoots and Roots -- 8.1 A Growing Number of Imaging Applications Enrich the Plant Phenotyping Portfolio -- 8.2 Precision Phenotyping of Canopies Structure and Photosynthetic Performance -- 8.3 Non-invasive Fluorescence Imaging of Arabidopsis Enables the Quantification of Phenotypic Diversity Driven by Genetic and Environmental Factors -- 8.4 Nuclear Magnetic Resonance Imaging (MRI): A Tool for Characterizing and Optimizing the Dynamic Processes of Rhizogenesis and Root Growth of Cuttings -- 8.5 Conclusions -- References -- Chapter 9 Association Mapping of Genetic Resources: Achievements and Future Perspectives -- 9.1 Introduction -- 9.1.1 Population Structure and Association Mapping Methods -- 9.1.2 Nested Association Mapping (NAM) -- 9.1.3 Software for Association Mapping -- 9.1.4 Computational Speed -- 9.2 Achievements -- 9.2.1 Association Mapping in Plants -- 9.2.2 GWAS in Plants -- 9.2.3 Arabidopsiss -- 9.2.4 Maize -- 9.2.5 Rice -- 9.2.6 Community Resources in Wheat, Barley, Soybean, and Sorghum -- 9.3 Challenges and Opportunities -- 9.3.1 Missing Heritability -- 9.3.2 New Gene Identification -- 9.3.3 Genotyping-by-Sequencing (GBS) -- 9.3.4 Rare Alleles -- 9.3.5 Genic and Nongenic Contribution -- References -- Chapter 10 Exploiting Barley Genetic Resources for Genome Wide Association Scans (GWAS) -- 10.1 Introduction -- 10.2 Multi Parent Populations -- 10.3 Linkage Disequilibrium. , 10.4 Population Structure -- 10.5 Genetic Markers -- 10.6 Ascertainment Bias -- 10.7 GWAS -- 10.8 Future Prospects -- References -- Chapter 11 Production and Molecular Cytogenetic Identification of Wheat-Alien Hybrids and Introgression Lines -- 11.1 Introduction -- 11.1.1 Interspecific and Intergeneric Hybridization of Plant Species -- 11.1.2 Molecular Cytogenetic Techniques -- 11.1.2.1 Chromosome Banding Techniques -- 11.1.2.2 In situ Hybridization -- 11.2 Wide Hybridization of Wheat -- 11.2.1 Wheat Barley Hybridization -- 11.2.1.1 Production of Wheat Barley Hybrids and Addition Lines -- 11.2.1.2 Wheat/Barley Translocations -- 11.2.2 Wheat Rye Hybrids -- 11.2.2.1 Wheat Rye Crossability -- 11.2.2.2 Wheat-Rye Addition and Substitution Lines -- 11.2.2.3 Wheat/Rye Translocations -- 11.2.3 Wheat Aegilops Hybrids -- 11.2.3.1 Aegilops (goatgrass) Species -- 11.2.3.2 Production of Wheat Aegilops Hybrids, Addition and Translocation Lines -- 11.2.4 Wheat Thinopyrum (syn. Agropyron) Hybrids -- 11.2.4.1 Agropyron Species -- 11.2.4.2 Exploitation of Thinopyrum Species for Wheat Improvement -- 11.3 Conclusions -- References -- Chapter 12 Radiation Hybrids: A valuable Tool for Genetic, Genomic and Functional Analysis of Plant Genomes -- 12.1 Effects of Radiation on Plant Genomes -- 12.1.1 Considerations on the Radiation Effect for Mutant Population Development -- 12.2 Application of Radiation Mutagenesis in Crop Improvement -- 12.2.1 Mutation Breeding Contribution to Crop Improvement -- 12.2.2 Advantages and Disadvantages of Mutation Breeding -- 12.3 Radiation Hybrid Mapping of Genomes -- 12.3.1 Why Radiation Hybrid Mapping? -- 12.3.1.1 Uniform Mapping Resolution Across the Chromosome -- 12.3.1.2 Higher Resolution Without Increasing the Population Size -- 12.3.1.3 Polymorphism is Not a Requirement for RH Mapping. , 12.3.2 Radiation Hybrid Mapping in Animal Systems.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Plant diseases. ; Electronic books.
    Description / Table of Contents: This book shows the pivotal role played by genomics in order to mine germplasm collections, elucidate gene function, identify superior alleles and, ultimately, release improved cultivars. It features a number of compelling case studies and examples.
    Type of Medium: Online Resource
    Pages: 1 online resource (517 pages)
    Edition: 1st ed.
    ISBN: 9789400775756
    DDC: 581.35
    Language: English
    Note: Intro -- Foreword -- Foreword -- Preface -- Contents -- Contributors -- Part I Harnessing Plant Genetic Diversity for Enhancing Crop Production and Its Sustainability -- Chapter 1 Genetics and Genomics of Flowering Time Regulation in Sugar Beet -- 1.1 The Sugar Beet Crop and Its Cultivated and Wild Relatives -- 1.2 Sugar Beet Breeding and Genetics -- 1.3 Phenology of Beta Species -- 1.4 Genomic Resources for Beet -- 1.5 Genetics of Bolting Time in Beet -- 1.6 Flowering Time Genes and Their Regulation in Beet -- 1.6.1 Beet Homologs of the FLC Gene and Putative Regulators -- 1.6.2 Photoperiodic Pathway and CO Homologs -- 1.6.3 Two Copies of FT Homologs with Different Function in Beet -- 1.6.4 GA Metabolism and Early Bolting -- 1.7 A Model for Bolting Time Regulation in Beet -- 1.8 Exploiting Natural Variation for Bolting Time -- 1.9 Strategies to Breed Winter Beets by Manipulating Major Bolting Time Regulators -- References -- Chapter 2 Mining the Genus Solanum for Increasing Disease Resistance -- 2.1 Introduction -- 2.1.1 General Introduction -- 2.1.2 Solanaceae Resources -- 2.1.3 Resistance Genes -- 2.2 Functional Resistance Screens -- 2.2.1 Screening for Disease Resistant Accessions in Gene Bank Material -- 2.2.2 QTL Mapping/LD Mapping -- 2.3 Techniques for Allele Mining -- 2.3.1 Molecular Tools for Allele Tagging -- 2.3.1.1 NBS Profiling -- 2.3.1.2 (Eco)-tilling -- 2.3.1.3 Amplification of Specific Allelic Variants -- 2.3.2 Next Generation Sequencing in Allele Mining -- 2.3.3 Functional Analysis of Newly Identified Alleles -- 2.4 Examples of Allele Mining in Solanum -- 2.4.1 Genetic Mapping -- 2.4.2 Cloning Functional Alleles -- 2.4.3 Uncovering Allelic Variation for Specific Genes -- 2.4.4 Alleles in Natural Populations of Solanum -- References. , Chapter 3 Dissection of Potato Complex Traits by Linkage and Association Genetics as Basis for Developing Molecular Diagnostics in Breeding Programs -- 3.1 Introduction -- 3.2 Methods for the Genetic Dissection of Complex Traits in Potato -- 3.2.1 Linkage Mapping -- 3.2.2 Association Mapping -- 3.3 Resistance to Pests and Diseases -- 3.3.1 Late Blight: Phytophthora Infestans -- 3.3.2 Root Cyst Nematodes: Globodera Pallida -- 3.3.3 Fungi -- 3.3.4 Viruses: PLRV -- 3.3.5 Bacteria: Erwinia (Pectobacterium) -- 3.3.6 Insect Resistance -- 3.4 Tuber Traits -- 3.4.1 Tuber Starch Content and Starch Yield -- 3.4.2 Reducing Sugars, Cold Induced Sweetening and Chip Quality -- 3.4.3 Enzymatic Discoloration, Tuber Bruising and After Cooking Darkening -- 3.4.4 Potato Tuber Yield, Size and Tuber Initiation (Tuberization) -- 3.4.5 Tuber Shape and Eye Depth -- 3.4.6 Tuber Dormancy, Sprouting -- 3.4.7 Tuber Texture and Flavour -- 3.4.8 Tuber Flesh Colour (Carotenoids, Anthocyanins) -- 3.4.9 Glycoalkaloids -- 3.5 Conclusion and Outlook -- References -- Chapter 4 Introgression Libraries with Wild Relatives of Crops -- 4.1 Introduction -- 4.2 IL-Based Analyses of Complex Traits -- 4.3 The IL Approach in the Tomato Clade -- 4.3.1 The S. pennellii LA0716 Exotic Library -- 4.3.2 IL-Based System Analyses of Integrated Developmental Networks -- 4.3.3 Other Tomato Library Resources -- 4.4 Integrative Approaches to Genomic Introgression Mapping -- 4.5 Conclusions -- References -- Chapter 5 Microphenomics for Interactions of Barley with Fungal Pathogens -- 5.1 Introduction -- 5.1.1 Phenotype Driven Screens for Plant--Pathogen Interactions in Barley -- 5.1.2 Gene-Oriented Phenomics Strategy -- 5.1.2.1 Transcription Profiling -- 5.1.2.2 Gene Function -- 5.1.2.3 Fungal Genes -- 5.1.2.4 Random Selection of Genes -- 5.1.2.5 Genes Co-localizing with Resistance QTL. , 5.1.3 Genotype-Based Phenomics Strategy -- 5.1.3.1 Allelic Diversity in Plant Genetic Resources -- 5.1.3.2 Mutagenesis -- 5.2 Microphenomics Screen Workflow -- 5.2.1 RNAi Library Preparation -- 5.2.2 Microscopy -- 5.2.2.1 Haustoria Staining -- 5.2.2.2 Staining of Fungal Structure on the Leaf Surface -- 5.2.3 Image Analysis and Processing -- 5.2.3.1 Recognition of B. graminis Haustoria in Barley -- 5.2.3.2 HyphArea Platform -- 5.2.3.3 B. graminis Hyphal Growth Measurement -- 5.2.3.4 Recognition of Rhynchosporium secalis in Barley -- 5.2.4 Detailed Analysis and Gene Validation -- 5.2.5 TIGS Screening Results -- 5.2.6 Transcript Regulation as Selection Criterion -- 5.2.7 Selection Based on Function of the Genes -- 5.2.8 Co-localization with Resistance QTL -- 5.2.9 Fungal Genes -- 5.2.10 Random Selection of Candidates -- 5.3 Conclusions and Perspectives -- References -- Chapter 6 Genomics of Low-Temperature Tolerance for an Increased Sustainability of Wheat and Barley Production -- 6.1 Introduction -- 6.2 ``Omic'' Approaches to Study Cold Acclimation -- 6.2.1 Transcriptomics -- 6.2.2 Proteomics -- 6.2.3 Metabolomics -- 6.3 Molecular Networks: Key Steps in Cold Acclimation (Genomic Role of the CBF Regulon) -- 6.3.1 Function of the CBF Regulatory Hub -- 6.3.2 Early Events in the Cascade -- 6.3.3 Integration of the Circadian Control -- 6.3.4 CBF-Independent Hubs -- 6.4 Exploiting Genetic Resources and Genomic Selection for FT -- 6.4.1 Genetic Resources -- 6.4.2 Genomics-Assisted Breeding -- 6.4.2.1 LD-MAS for Freezing Tolerance -- 6.4.2.2 Genomic Selection (GS) -- 6.5 Conclusions and Perspectives -- References -- Chapter 7 Bridging Conventional Breeding and Genomics for A More Sustainable Wheat Production -- 7.1 The Importance of Genetic Variation and Genetic Resources -- 7.2 Sources of Variation -- 7.2.1 Sexual Hybridization. , 7.2.2 Modern Mutation Approaches for Creating Genetic Variation: TILLING (Targeting Induced Local Lesions IN Genomes) -- 7.2.3 Using Transgenic Approaches for Wheat Improvement -- 7.3 Measuring and Using Genetic Diversity -- 7.4 Genomics as an Aid for Selection -- 7.4.1 The Impact of Genomics on Marker Assisted Breeding -- 7.4.2 Genome-Wide Marker Data -- 7.5 Training Population and Selection Candidates -- 7.6 Genomic Selection Models -- 7.7 Future Research Needs, New Concepts -- 7.8 It is More than Genomics and Breeding: A Glimpse at the Future -- References -- Chapter 8 Genetic Dissection of Aluminium Tolerance in the Triticeae -- 8.1 Introduction -- 8.2 Improved Methods for Germplasm Evaluation for Al3+ Tolerance -- 8.3 Dissection of Al3+ Tolerance Loci -- 8.4 Molecular Marker Systems for Mapping of Al3+ Tolerance Loci -- 8.4.1 (1) Dissection of Al3+ Tolerance Genes in Wheat -- 8.5 Multiple Origin of Al3+ Tolerance in Wheat -- 8.6 Dissection of Al3+ Tolerance Genes in Barley -- 8.7 Dissection of Al3+ Tolerance Genes in Rice -- 8.8 Molecular Breeding for Al Tolerance Using Marker-Assisted Selection (MAS) -- 8.9 Conclusions -- References -- Chapter 9 Maintaining Food Value of Wild Rice (Zizania palustris L.) Using Comparative Genomics -- 9.1 Introduction -- 9.2 Wild Rice Genetics -- 9.3 Wild Rice Genetic Diversity -- 9.4 Wild Rice Breeding -- 9.5 Case Study: Breeding Wild Rice Using Marker-Assisted Breeding for Nonshattering -- References -- Part II Genomics-Assisted Crop Improvement for Food Security -- Chapter 10 Genomics-Assisted Allele Mining and its Integration Into Rice Breeding -- 10.1 Introduction -- 10.2 Discovery of Natural Variation for Use in Rice Breeding -- 10.2.1 Developing Advanced Plant Materials from Diverse Rice Accessions -- 10.2.2 Genetic Architecture of Heading Date Revealed by Analysis of Novel Plant Materials. , 10.3 Genetic Dissection of Agriculturally Important Traits -- 10.3.1 Characterization of Durable Resistance Genes for Rice Blast -- 10.3.2 Genetic Control of Rice Root Morphology -- 10.3.3 Isolation and Pyramiding of Yield-Related Genes -- 10.4 Application of Genome-Wide SNP Analysis -- 10.5 Conclusions and Future Prospects -- References -- Chapter 11 New Insights Arising from Genomics for Enhancing Rice Resistance Against the Blast Fungus -- 11.1 Introduction -- 11.2 Insights in Rice Blast Resistance Gained from the Genome Sequence -- 11.2.1 Mapping R-genes and QTLs -- 11.2.2 Forward-Genetics Approaches Applied to Arsenal Genes in the Genomic Era -- 11.2.3 Insights in Rice Blast Resistance Gained from Functional Genomics -- 11.3 Structure of Arsenal -- 11.3.1 A Few Surprises for R and PR Genes -- 11.3.2 Some Chromosomes are Richer than Others in Key Regulators -- 11.4 Structural and Functional Diversity of the Arsenal -- 11.4.1 Presence/Absence as a Source of Polymorphism -- 11.4.2 Alternative Splicing of the Rice Arsenal -- 11.4.3 Expression Diversity of the Arsenal -- 11.5 Breeding Perspectives -- 11.5.1 New Tools for Pre-Breeding -- 11.5.2 RNA-Based Breeding -- 11.6 Research Perspectives -- 11.7 Concluding Remarks: Insights from the Enemy -- References -- Chapter 12 Enhancing Abiotic Stress Tolerance in Plants by Modulating Properties of Stress Responsive Transcription Factors -- 12.1 Drought Definition in the Agricultural Context -- 12.1.1 Counter-Acting Drought and Associated Stresses Through Traditional Crop Breeding, Gene Discovery and Genetic Engineering -- 12.2 Stress-Responsive Mechanisms During Drought and Other Abiotic Stress Conditions -- 12.3 Transcriptional Regulation of Plant Responses to Drought and Other Stress Conditions. , 12.3.1 Signal Transduction Pathways During Drought are Mediated Through Abscisic Acid-Dependent and Abscisic Acid-Independent Pathways.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Forschungsbericht ; Gerstenzüchtung ; Genanalyse
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (19 Seiten, 1,31 MB) , Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 0315969D. - Verbund-Nummer 01094406 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Projektleiter sind laut Berichtsblatt Autoren , Mit deutscher Zusammenfassung
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Forschungsbericht ; Pflanzenzüchtung ; Winterweizen ; Hybridweizen ; Genotyp ; Anbautechnik
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (33 Seiten, 5,11 MB) , Diagramme, Illustrationen
    Language: German
    Note: Förderkennzeichen BMBF 031A354G , Verbundnummer 01153114 , Literaturverzeichnis: Seite 8-9 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 442 (2006), S. 353-353 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Sir In your News story “Doomsday food store takes pole position” (Nature 441, 912–913; 200610.1038/441912b) you report the establishment of a “doomsday seed bank from which the genetic riches of Earth's ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...