GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Tephra layers within marine sediments provide information on past explosive eruptions, which is especially important in the case of remote island arcs where data on proximal pyroclastic deposits can be scarce. Three Alaska-Aleutian tephras (labeled Br2, SR2, and SR4) were found in the late Pleistocene-Holocene sediments of the Bering Sea (north Pacific). We fingerprint glass from these tephras with the help of single-shard electron microprobe and LA-ICP-MS analyses and provide microprobe data on minerals from two of these tephras. The large compositional variability of the Alaska-Aleutian volcanoes permits the use of ratios of highly incompatible trace elements (Ba/Nb, Th/Nb, Th/La, La/Nb) for identification of distal tephra sources by comparison of these ratios in tephra glass and proximal bulk rock analyses. This method, along with mapped tephra dispersal, has allowed us to link tephras under study to Aniakchak, Semisopochnoi, and Okmok volcanoes, respectively. Our results indicate that tephra Br2 was derived from the ~ 3.6 ka Aniakchak II caldera-forming eruption (Alaska, USA). This is the first ever finding of the Aniakchak II tephra in Bering Sea sediments, which permits enlargement of its tephra volume and eruption magnitude to ~ 100 km3 and 6.8, respectively. Tephra SR2, dated at ~ 12.2 ka, is likely associated with a post-glacial caldera on the Semisopochnoi Island, Aleutians (USA). Tephra SR4 (dated at ~ 64.5 ka), likely was derived from an earlier undocumented eruption from Okmok volcano (Aleutians). All three regionally spread tephra layers are valuable isochrones, which can be used for correlating and dating of Bering Sea sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-20
    Description: We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past similar to 180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Highlights • Multi-proxy, multi-site reconstruction of Okhotsk Sea palaeo-productivity and mid-depth ventilation changes from 8 to 18 ka. • Link between hinterland river discharge and downstream Okhotsk Sea Intermediate Water (OSIW) ventilation/nutrient signatures. • Surplus Fe, Si(OH)4 export in OSIW during Bølling-Allerød to pelagic Pacific supported transient nutrient-replete conditions. • Subarctic and subtropical Pacific gyres disconnected during Bølling-Allerød, with restricted OSIW flow to lower latitudes. • Deglacial OSIW export and mid-depth Pacific biogeochemistry modulate millennial-scale regional CO2 source/sink conditions. The modern North Pacific plays a critical role in marine biogeochemical cycles, as an oceanic sink of CO2 and by bearing some of the most productive and least oxygenated waters of the World Ocean. The capacity to sequester CO2 is limited by efficient nutrient supply to the mixed layer, particularly from deeper water masses in the Pacific's subarctic and marginal seas. The region is in addition only weakly ventilated by North Pacific Intermediate Water (NPIW), which receives its characteristics from Okhotsk Sea Intermediate Water (OSIW). Here, we present reconstructions of intermediate water ventilation and productivity variations in the Okhotsk Sea that cover the last glacial termination between eight and 18 ka, based on a set of high-resolution sediment cores from sites directly downstream of OSIW formation. In a multi-proxy approach, we use total organic carbon (TOC), chlorin, biogenic opal, and CaCO3 concentrations as indicators for biological productivity. C/N ratios and XRF scanning-derived elemental ratios (Si/K and Fe/K), as well as chlorophycean algae counts document changes in Amur freshwater and sediment discharge that condition the OSIW. Stable carbon isotopes of epi- and shallow endobenthic foraminifera, in combination with 14C analyses of benthic and planktic foraminifera imply decreases in OSIW oxygenation during deglacial warm phases from c. 14.7 to 13 ka (Bølling-Allerød) and c. 11.4 to 9 ka (Preboreal). No concomitant decreases in Okhotsk Sea benthic-planktic ventilation ages are observed, in contrast to nearby, but southerly locations on the Japan continental margin. We attribute Okhotsk Sea mid-depth oxygenation decreases in times of enhanced organic matter supply to maxima in remineralization within OSIW, in line with multi-proxy evidence for maxima in primary productivity and supply of organic matter. Sedimentary C/N and Fe/K ratios indicate more effective entrainment of nutrients into OSIW and thus an increased nutrient load of OSIW during deglacial warm periods. Correlation of palynological and sedimentological evidence from our sites with hinterland reference records suggests that millennial-scale changes in OSIW oxygen and nutrient concentrations were largely influenced by fluvial freshwater runoff maxima from the Amur, caused by a deglacial northeastward propagation of the East Asian Summer Monsoon that increased precipitation and temperatures, in conjunction with melting of permafrost in the Amur catchment area. We suggest that OSIW ventilation minima and the high lateral supply of nutrients and organic matter during the Allerød and Preboreal are mechanistically linked to concurrent maxima in nutrient utilization and biological productivity in the subpolar Northwest Pacific. In this scenario, increased export of nutrients from the Okhotsk Sea during deglacial warm phases supported subarctic Pacific shifts from generally Fe-limiting conditions to transient nutrient-replete regimes through enhanced advection of mid-depth nutrient- and Fe-rich OSIW into the upper ocean. This mechanism may have moderated the role of the subarctic Pacific in the deglacial CO2 rise on millennial timescales by combining the upwelling of old carbon-rich waters with a transient delivery of mid-depth-derived bio-available Fe and silicate.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Poster] In: 7. Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes: Mitigating Risk through International Volcano, Earthquake, and Tsunami Science (JKASP-2011), 25.-30.08.2011, Petropavlovsk-Kamchatsky, Russia .
    Publication Date: 2012-07-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-10
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Selbstverl. der Alfred-Wegener-Stiftung
    In:  In: Klimavariabilität 2003 : 22. - 25. September 2003, Potsdam, Telegrafenberg / DKT, 6. Deutsche Klimatagung. [Verantw. Jörg F. W. Negendank]. Terra Nostra, 2003 (6). Selbstverl. der Alfred-Wegener-Stiftung, Bonn, pp. 271-273.
    Publication Date: 2016-06-03
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Lithological, geochemical, and micropaleontological data indicate that the Late Glacial of the northwestern Okhotsk Sea (OS) is characterised by severe climatic and environmental conditions with mainly perennial sea ice coverage and low productivity accompanied by weak deep-water ventilation and a temperate formation of the upper Sea of Okhotsk Intermediate Water (SOIW). The age model of the studied core sediments was constructed by AMS 14C dating. The most severe environmental conditions occurred during the period 15.8–14.8 kyr, synchronous with cold Heinrich event 1. Insignificant regional environmental amelioration accompanied by an increase of productivity and ice weakening during summer occurred almost simultaneously with the Bølling–Allerøed (BA) warming. The obtained results distinguished both the Bølling and Allerøed warmings as having different environmental conditions. Oxygen content in the surface sediment was low, as seen from the production of the benthic foraminifera (BF) species. During 12.6–11.1 kyr, synchronous with the Younger Dryas (YD) cold event, the regional environment conditions were cold, but not as severe as the glacial ones. Some climatic warming since the Preboreal has stimulated sea ice melting and surface amelioration during the summer season, which in turn led to a productivity rise and changes in the water column and bottom environment. Some increase in the surface water stratification and the intensified oceanic diatom and surface radiolarian production is parallel with the development of a mesopelagic regime of productivity. The surface sediment condition favours BF abundance and domination by BF species tolerant to oxygen deficiencies. During the Boreal period more stable surface conditions were accompanied by continuously high productivity and an intensifying of its mesopelagic regime. Significant regional climate warming since the Atlantic (9 kyr ago) strongly intensified the summer sea ice melting in the OS, and this created considerable surface environment amelioration with the preferential transport of bacteria and phytodetritus into the SOIW. Further considerable warming of the regional climate from 6 kyr ago contributed to slight sea ice changes, surface water warming, and the enhancement of its stratification; all typical for most of the OS. Along with a high nutrient supply from the Amur River, the NW OS experienced a strong diatom production increase with the maximum amount occurring during the last 3.6 kyr. This changed the productivity type and organic matter export into the water column while increasing the feeding of the ‘‘productive’’ Plagoniidae spp. group and decreasing the microbial biomass supply into the upper SOIW. Some sea surface water cooling or saltier conditions at the beginning of the Subatlantic (2.4–1.8 kyr) was followed by its warming or freshening 1.5–1.0 kyr ago, which likely correlated with the Medieval Warm Period. In turn, that probably led to strong surface water stratification, productivity deterioration and considerable changes in the overall NW OS environment. The established sequence of the northwestern OS environmental changes during the Late Glacial–Holocene is related to the Northern Hemispheric climate changes and was likely forced by atmospheric teleconnection in line with the polar circulation index variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Benthic foraminiferal and sediment biogeochemical data (total organic carbon, calcium carbonate and biogenic opal contents) in two cores (1265 and 1312 m water depths) from the southeastern Sakhalin slope and one core (839 m water depth) from the southwestern Kamchatka slope were investigated to reconstruct variations of the oxygen minimum zone during the last 50 ka in the Okhotsk Sea. The oxygen minimum zone was less pronounced during the maximal cooling in the MIS 2 that is suggested to be caused by a maximal expansion of sea ice cover, decrease of marine productivity and increase of production of the oxygenated Okhotsk Sea Intermediate Water (OSIW). A two-step-like strengthening of oxygen minimum zone during the warmings in the Termination Ia and Ib was linked to (1) enhanced oxygen consumption due to degradation of large amount of organic matter in the water column and bottom sediments, originated from increased marine productivity and supply of terrigenous material from the submerged northern shelves; (2) sea ice cover retreat and reduction of OSIW production; (3) freely inflow of the oxygen-depleted deep intermediate water mass from the North Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: This paper is based on the results of a comprehensive investigations of sediments from seven cores sampled during the International Russian-Chinese Cruise 53 of the R/V “Akademik Lavrentyev” (2010) in the frames of the Russian-Chinese collaboration between the Pacific Oceanological Institute of the Far-Eastern Branch of the Russian Academy of Sciences (POI FEB RAS, Vladivostok, Russia), and the First Institute of Oceanography (FIO, Qingdao, China). Baitoushan (Chanbaishan) Volcano had several powerful explosive eruptions during the Middle Pleistocene-Holocene, which produced widespread tephra layers. The paper reports chemical composition of volcanic glasses and minerals from six tephra layers labeled as B-Og, B-Sado, B-J, B-Un1, B-V, and B-Tm, which belong to Baitoushan Volcano and were identified in sediments of the northwestern part of the Sea of Japan. The tephras were dated using geochronological data for the host sediments. The estimated ages for the Middle Pleistocene tephra is 488 ka; the Late Pleistocene tephras are 71.1–71.9 cal. kа (B-Sado), 50.8 cal. ka (B-J), 38.3 cal. ka (B-Un1), and 29.0–29.4 cal. ka (B-V). The ash layers consist of alkali-rich glass of trachydacitic to alkaline rhyolitic composition and specific assemblage of minerals including Fe-rich augite-hedenbergite, aegirine-augite, aegirine, arfvedsonite, and fayalite. The mineral assemblage is typical for alkalic volcanic rocks from continental rift setting. Aenigmatite, a rare mineral from the group of inosilicates, was firstly identified in distal tephra of Baitoushan Volcano, supplied into marine sediments. The composition of glasses and minerals from all layers are similar. It testifies about steady-state conditions of the magma accumulation under Baitoushan Volcano and about the bimodal character of magmatic chambers during the Late Pleistocene and Holocene (since 100 ka).
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-03-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...