GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Type of Medium: Book
    Pages: 33 S , Ill., graph. Darst
    Series Statement: Report / Institute of Oceanographic Sciences Wormley, Godalming 156
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  Journal of The Marine Biological Association of The United Kingdom, 76 (2). pp. 297-310.
    Publication Date: 2019-01-22
    Description: Metazoan meiofauna were studied in replicated multiple-corer samples obtained at a bathyal site (1320–1360 m depth) in the Porcupine Seabight (51°36′N 13°00′W) before (April) and after (July) the delivery to the seafloor of a phytodetrital pulse originating from the 1982 spring bloom. In all samples the metazoan meiofauna was dominated by nematodes; harpacticoid copepods and their nauplii were the second most abundant taxon. Population densities and biomass were very similar in both sample sets, the only significant differences being in the numbers of ostracods (higher in April) and nauplii (higher in July). Furthermore, vertical distribution patterns in the top 5 cm of sediment indicate that the meiofauna did not migrate towards the sediment surface following the phytodetrital pulse. The lack of a metazoan meiofaunal response contrasts with published evidence, based on the same samples, for a substantial increase in the foraminiferal abundance following the sedimentation event. Thus our results suggest that metazoans (as a whole) fail to exploit and utilize phytodetritus as rapidly as foraminifera. This probably reflects the energetic expense of egg production coupled with frequently slower rates of somatic growth among metazoans. In addition, foraminifera may outcompete metazoans for detrital food because they possess extremely efficient food-gathering organelles (granuloreticulate pseudopodia) and are able to raise their levels of metabolic activity very rapidly. However, metazoan responses at the species level, or over longer time periods (〉3 months), would not have been detected and so remain a possibility.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Kluwer Acad. Publ.
    In:  In: Deep-Sea Food Chains and the Global Carbon Cycle. , ed. by Rohwe, G. T. and Pariente, V. Kluwer Acad. Publ., Dordrecht, pp. 63-91.
    Publication Date: 2015-10-07
    Type: Book chapter , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Encyclopedia of Ocean Sciences Vol. 2. , ed. by Steel, J. H. Elsevier, London, England, pp. 684-705, 22 pp. 3rd edition
    Publication Date: 2020-05-04
    Description: Foraminifera are immensely successful and diverse components of deep-sea benthic communities, encompassing an extraordinary range of morphotypes and ecological traits. Bathymetric and geographic distributions are strongly influenced by organic-matter fluxes and carbonate dissolution. Species occupying different microhabitats within the sediment exhibit different ecological characteristics. Shallow-infaunal species are often active in processing labile organic matter and show seasonal population fluctuations; deeper infaunal species are less responsive and have more stable populations. Some foraminifera are highly tolerant of hypoxia, exhibiting ultrastructural and physiological adaptations to these stressful conditions, including the ability to respire nitrate. The structure and composition of fossil foraminiferal assemblages, and geochemical signals preserved in their calcareous shells, provide important proxies for reconstructing ancient oceans, particularly during the Late Cenozoic.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-21
    Description: This chapter throws the attention on the meiobenthos of the deep northeast Atlantic. The main purpose of this chapter is to summarize new results from an area lying between 15°N and 53°N and extending from the continental margin of western Europe and northwest Africa to the Mid-Atlantic Ridge. It considers first the nature and scope of meiofaunal research in the northeast Atlantic and then discuss the environmental parameters, which are believed to influence meiofaunal organisms. This chapter then discusses the various types and scales of pattern observed among meiofaunal populations within the study area, progressing from the large-scale bathymetric and latitudinal trends and then to small-scale horizontal patterns within particular areas. Faunal densities and faunal composition are considered separately and compared with data from other regions. This chapter also deals with the distribution of meiofauna within sediment profiles and the temporal variability of populations. This chapter concludes by discussing the recent review of deep-sea meiofauna, which focused mainly on the abundance and biomass data from different oceans and on the relationship between the biomass of the meiofauna and that of other faunal components
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 46 (12). pp. 2041-2052.
    Publication Date: 2016-10-27
    Description: Although much of the deep sea is physically tranquil, some regions experience near-bottom flows that rework the surficial sediment. During periods of physical reworking, animals in the reworked layer risk being suspended, which can have both positive and negative effects. Reworking can also change the sediment in ecologically important ways, so the fauna of reworked sites should differ from that of quiescent locations. We combined data from two reworked, bathyal sites on the summit of Fieberling Guyot (32°27.631′N, 127°49.489′W; 32°27.581′N, 127°47.839′W) and compared the results with those of more tranquil sites. We tested for differences in the following parameters, which seemed likely to be sensitive to the direct or indirect effects of reworking: (1) the vertical distribution of the meiofauna in the sea bed, (2) the relative abundance of surface-living harpacticoids, (3) the proportion of the fauna consisting of interstitial harpacticoids, (4) the ratio of harpacticoids to nematodes. We found that the vertical distributions of harpacticoid copepods, ostracods, and kinorhynchs were deeper on Fieberling. In addition, the relative abundance of surface-living harpacticoids was less, the proportion of interstitial harpacticoids was greater, and the ratio of harpacticoids to nematodes was greater on Fieberling. These differences between Fieberling and the comparison sites suggest that physical reworking affects deep-sea meiofauna and indicate the nature of some of the effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: 13C tracer experiments were conducted at sites spanning the steep oxygen, organic matter, and biological community gradients across the Arabian Sea oxygen minimum zone, in order to quantify the role that benthic fauna play in the short-term processing of organic matter (OM) and to determine how this varies among different environments. Metazoan macrofauna and macrofauna-sized foraminiferans took up as much as 56 +/- 13 mg of added C m**-2 (685 mg C m**-2 added) over 25 d, and at some sites this uptake was similar in magnitude to bacterial uptake and/or total respiration. Bottom-water dissolved oxygen concentrations exerted a strong control over metazoan macrofaunal OM processing. At oxygen concentrations 〉7 µmol/L (0.16 ml/L), metazoan macrofauna were able to take advantage of abundant OM and to dominate OM uptake, while OM processing at O2 concentrations of 5.0 µmol/L (0.11 ml/L) was dominated instead by (macrofaunal) foraminiferans. This led us to propose the hypothesis that oxygen controls the relative dominance of metazoan macrofauna and foraminifera in a threshold manner, with the threshold lying between 5 and 7 µmol/L (0.11 to 0.16 ml/L). Large metazoan macrofaunal biomass and high natural concentrations of OM were also associated with rapid processing of fresh OM by the benthic community. Where they were present, the polychaete Linopherus sp. and the calcareous foraminiferan Uvigerina ex gr. semiornata, dominated the uptake of OM above and below, respectively, the proposed threshold concentrations of bottom-water oxygen.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...