GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Publication Date: 2023-11-23
    Description: Based on inferences from proxy records the Miocene (23.03–5.33 Ma) was a time of amplified polar warmth compared to today. However, it remains a challenge to simulate a warm Miocene climate and pronounced polar warmth at reconstructed Miocene CO〈sub〉2〈/sub〉 concentrations. Using a state‐of‐the‐art Earth‐System‐Model, we implement a high‐resolution paleobathymetry and simulate Miocene climate at different atmospheric CO〈sub〉2〈/sub〉 concentrations. We estimate global mean surface warming of +3.1°C relative to the preindustrial at a CO〈sub〉2〈/sub〉 level of 450 ppm. An increase of atmospheric CO〈sub〉2〈/sub〉 from 280 to 450 ppm provides an individual warming of ∼1.4°C, which is as strong as all other Miocene forcing contributions combined. Substantial changes in surface albedo are vital to explain Miocene surface warming. Simulated surface temperatures fit well with proxy reconstructions at low‐ to mid‐latitudes. The high latitude cooling bias becomes less pronounced for higher atmospheric CO〈sub〉2〈/sub〉 concentrations. At such CO〈sub〉2〈/sub〉 levels simulated Miocene climate shows a reduced polar amplification, linked to a breakdown of seasonality in the Arctic Ocean. A pronounced warming in boreal fall is detected for a CO〈sub〉2〈/sub〉 increase from 280 to 450 ppm, in comparison to weaker warming for CO〈sub〉2〈/sub〉 changes from 450 to 720 ppm. Moreover, a pronounced warming in winter is detected for a CO〈sub〉2〈/sub〉 increase from 450 to 720 ppm, in contrast to a moderate summer temperature increase, which is accompanied by a strong sea‐ice concentration decline that promotes cloud formation in summer via enhanced moisture availability. As a consequence planetary albedo increases and dampens the temperature response to CO〈sub〉2〈/sub〉 forcing at a warmer Miocene background climate.
    Description: Key Points: At a CO〈sub〉2〈/sub〉 level of 450 ppm, a Miocene simulation shows a global mean surface warming of +3.1°C relative to the preindustrial state. Atmospheric CO〈sub〉2〈/sub〉 increase from 280 to 450 ppm causes a warming of ∼1.4°C, which is as strong as all other forcing factors combined. At higher atmospheric CO〈sub〉2〈/sub〉 levels, the Miocene climate shows a reduced polar amplification linked to a breakdown of seasonality in the Arctic.
    Description: Alfred Wegener Institute
    Description: Helmholtz Centre for Polar and Marine Research
    Description: https://doi.org/10.1594/PANGAEA.943430
    Description: https://github.com/FESOM/fesom2/
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-avilability
    Keywords: atmospheric CO2 ; Miocene ; Miocene temperature change ; polar amplification ; climate modeling ; Miocene bathymetry
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Cambridge Univ. Press
    In:  Journal of Glaciology, 64 (244). pp. 227-235.
    Publication Date: 2018-12-17
    Description: The positive degree-day (PDD) model provides a particularly simple approach to estimate surface melt from land ice based solely on air temperature. Here, we use a climate and snow pack simulation of the Greenland ice sheet (Modèle Atmosphérique Régional, MAR) as a reference, to analyze this scheme in three realizations that incorporate the sub-monthly temperature variability differently: (i) by local values, (ii) by local values that systematically overestimate the dampened variability associated with intense melting or (iii) by one constant value. Local calibrations reveal that incorporating local temperature variability, particularly resolving the dampened variability of melt areas, renders model parameters more temperature-dependent. This indicates that the negative feedback between surface melt and temperature variability introduces a non-linearity into the temperature – melt relation. To assess the skill of the individual realizations, we hindcast melt rates from MAR temperatures for each realization. For this purpose, we globally calibrate Greenland-wide, constant parameters. Realization (i) exhibits shortcomings in the spatial representation of surface melt unless temperature-dependent instead of constant parameters are calibrated. The other realizations perform comparatively well with constant parametrizations. The skill of the PDD model primarily depends, however, on the consistent calibration rather than on the specific representation of variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Advances in Modeling Earth Systems, 9 (5). pp. 2027-2045.
    Publication Date: 2018-12-17
    Description: Understanding the dynamics of warm climate states has gained increasing importance in the face of anthropogenic climate change, and while it is possible to simulate warm interglacial climates, these simulated results cannot be evaluated without the aid of geochemical proxies. One such proxy is δ18O, which allows for inference about both a climate state's hydrology and temperature. We utilize a stable water isotope equipped climate model to simulate three stages during the Last Interglacial (LIG), corresponding to 130, 125, and 120 kyr before present, using forcings for orbital configuration as well as greenhouse gases. We discover heterogeneous responses in the mean δ18O signal to the climate forcing, with large areas of depletion in the LIG δ18O signal over the tropical Atlantic, the Sahel, and the Indian subcontinent, and with enrichment over the Pacific and Arctic Oceans. While we find that the climatology mean relationship between δ18O and temperature remains stable during the LIG, we also discover that this relationship is not spatially consistent. Our results suggest that great care must be taken when comparing δ18O records of different paleoclimate archives with the results of climate models as both the qualitative and quantitative interpretation of δ18O variations as a proxy for past temperature changes may be problematic due to the complexity of the signals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades and climate scenarios suggest that sea ice may completely disappear during summer within the next about 50–100 years. Here we produce Arctic sea ice biomarker proxy records for the penultimate glacial (Marine Isotope Stage 6) and the subsequent last interglacial (Marine Isotope Stage 5e). The latter is a time interval when the high latitudes were significantly warmer than today. We document that even under such warmer climate conditions, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Our proxy reconstruction of the last interglacial sea ice cover is supported by climate simulations, although some proxy data/model inconsistencies still exist. During late Marine Isotope Stage 6, polynya-type conditions occurred off the major ice sheets along the northern Barents and East Siberian continental margins, contradicting a giant Marine Isotope Stage 6 ice shelf that covered the entire Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 43 (6). pp. 2675-2682.
    Publication Date: 2019-02-01
    Description: The West Antarctic Ice Sheet (WAIS) is considered the major contributor to global sea level rise in the Last Interglacial (LIG) and potentially in the future. Exposed fossil reef terraces suggest sea levels in excess of 7 m in the last warm era, of which probably not much more than 2 m are considered to originate from melting of the Greenland Ice Sheet. We simulate the evolution of the Antarctic Ice Sheet during the LIG with a 3‐D thermomechanical ice sheet model forced by an atmosphere‐ocean general circulation model (AOGCM). Our results show that high LIG sea levels cannot be reproduced with the atmosphere‐ocean forcing delivered by current AOGCMs. However, when taking reconstructed Southern Ocean temperature anomalies of several degrees, sensitivity studies indicate a Southern Ocean temperature anomaly threshold for total WAIS collapse of 2–3°C, accounting for a sea level rise of 3–4 m during the LIG. Potential future Antarctic Ice Sheet dynamics range from a moderate retreat to a complete collapse, depending on rate and amplitude of warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  The Cryosphere, 12 (12). pp. 3923-3930.
    Publication Date: 2021-01-08
    Description: We propose a surface melt scheme for glaciated land surfaces, which only requires monthly mean short-wave radiation and temperature as inputs, yet implicitly accounts for the diurnal cycle of short-wave radiation. The scheme is deduced from the energy balance of a daily melt period, which is defined by a minimum solar elevation angle. The scheme yields a better spatial representation of melting than common empirical schemes when applied to the Greenland Ice Sheet, using a 1948–2016 regional climate and snowpack simulation as a reference. The scheme is physically constrained and can be adapted to other regions or time periods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-01-08
    Description: The Greenland Ice Sheet (GrIS) mass loss has been accelerating at a rate of about 20 ± 10 Gt/yr2 since the end of the 1990's, with around 60 % of this mass loss directly attributed to enhanced surface meltwater runoff. However, in the climate and glaciology communities, different approaches exist on how to model the different surface mass balance (SMB) components using: (1) complex physically-based climate models which are computationally expensive; (2) intermediate complexity energy balance models; (3) simple and fast positive degree day models which base their inferences on statistical principles and are computationally highly efficient. Additionally, many of these models compute the SMB components based on different spatial and temporal resolutions, with different forcing fields as well as different ice sheet topographies and extents, making inter-comparison difficult. In the GrIS SMB model intercomparison project (GrSMBMIP) we address these issues by forcing each model with the same data (i.e., the ERA-Interim reanalysis) except for two global models for which this forcing is limited to the oceanic conditions, and at the same time by interpolating all modelled results onto a common ice sheet mask at 1 km horizontal resolution for the common period 1980–2012. The SMB outputs from 13 models are then compared over the GrIS to (1) SMB estimates using a combination of gravimetric remote sensing data from GRACE and measured ice discharge, (2) ice cores, snow pits, in-situ SMB observations, and (3) remotely sensed bare ice extent from MODerate-resolution Imaging Spectroradiometer (MODIS). Our results reveal that the mean GrIS SMB of all 13 models has been positive between 1980 and 2012 with an average of 340 ± Gt/yr, but has decreased at an average rate of −7.3 Gt/yr2 (with a significance of 96 %), mainly driven by an increase of 8.0 Gt/yr2 (with a significance of 98 %) in meltwater runoff. Spatially, the largest spread among models can be found around the margins of the ice sheet, highlighting the need for accurate representation of the GrIS ablation zone extent and processes driving the surface melt. In addition, a higher density of in-situ SMB observations is required, especially in the south-east accumulation zone, where the model spread can reach 2 mWE/yr due to large discrepancies in modelled snowfall accumulation. Overall, polar regional climate models (RCMs) perform the best compared to observations, in particular for simulating precipitation patterns. However, other simpler and faster models have biases of same order than RCMs with observations and remain then useful tools for long-term simulations. Finally, it is interesting to note that the ensemble mean of the 13 models produces the best estimate of the present day SMB relative to observations, suggesting that biases are not systematic among models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Abstract Deglacial transitions of the middle to late Pleistocene (terminations) are linked to gradual changes in insolation accompanied by abrupt shifts in ocean circulation. However, the reason these deglacial abrupt events are so special compared with their sub-glacial-maximum analogues, in particular with respect to the exaggerated warming observed across Antarctica, remains unclear. Here we show that an increase in the relative importance of salt versus temperature stratification in the glacial deep South Atlantic decreases the potential cooling effect of waters that may be upwelled in response to abrupt perturbations in ocean circulation, as compared with sub-glacial-maximum conditions. Using a comprehensive coupled atmosphere–ocean general circulation model, we then demonstrate that an increase in deep-ocean salinity stratification stabilizes relatively warm waters in the glacial deep ocean, which amplifies the high southern latitude surface ocean temperature response to an abrupt weakening of the Atlantic meridional overturning circulation during deglaciation. The mechanism can produce a doubling in the net rate of warming across Antarctica on a multicentennial timescale when starting from full glacial conditions (as compared with interglacial or subglacial conditions) and therefore helps to explain the large magnitude and rapidity of glacial terminations during the late Quaternary.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Using transient climate forcing based on simulations from the Alfred Wegener Institute Earth System Model (AWI-ESM), we simulate the evolution of the Greenland Ice Sheet (GrIS) from the last interglacial (125 ka, kiloyear before present) to 2100 AD with the Parallel Ice Sheet Model (PISM). The impact of paleoclimate, especially Holocene climate, on the present and future evolution of the GrIS is explored. Our simulations of the past show close agreement with reconstructions with respect to the recent timing of the peaks in ice volume and the climate of Greenland. The maximum and minimum ice volume at around 18–17 ka and 6–5 ka lag the respective extremes in climate by several thousand years, implying that the ice volume response of the GrIS strongly lags climatic changes. Given that Greenland’s climate was getting colder from the Holocene Thermal Maximum (i.e., 8 ka) to the Pre-Industrial era, our simulation implies that the GrIS experienced growth from the mid-Holocene to the industrial era. Due to this background trend, the GrIS still gains mass until the second half of the 20th century, even though anthropogenic warming begins around 1850 AD. This is also in agreement with observational evidence showing mass loss of the GrIS does not begin earlier than the late 20th century. Our results highlight that the present evolution of the GrIS is not only controlled by the recent climate changes, but is also affected by paleoclimate, especially the relatively warm Holocene climate. We propose that the GrIS was not in equilibrium throughout the entire Holocene and that the slow response to Holocene climate needs to be represented in ice sheet simulations in order to predict ice mass loss, and therefore sea level rise, accurately.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Previous modelling efforts have investigated climate responses to different Milankovitch forcing during Marine Isotope Stage (MIS) 13. During this time the climate has been highly variable at atmospheric CO2 concentrations of ~240 ppm. As yet, ice sheet-climate feedbacks were missing in previous studies. Therefore we use the state-of-the-art coupled climate-ice sheet model, AWI-ESM-1.2, to investigate the MIS-13 climate and corresponding Northern Hemisphere ice sheet (NHIS) evolution by performing simulations under three different astronomical configurations representing 495, 506 and 517 kyr BP. The simulated excess ice compared to present-day is mainly over the Cordillera, Arctic islands and Tibet. The global mean surface air temperature for the MIS-13 experiments have the same magnitude. At 506 kyr BP with boreal summer at perihelion, the Northern Hemisphere continents are warmer during summer than the other experiments, which could potentially inhibit the development of the ice sheets. The Cordilleran Ice Sheet is found to be especially sensitive to orbital (precession) forcing, at an intermediate CO2 level. This is probably due to its high elevation where the freezing point could be easily maintained. The other ice sheets over northeast America and Eurasia, however, are absent in our simulations. We propose that the alpine-based Cordilleran Ice Sheet is more sensitive and easier to build up than other NHISs in response to the astronomical controlled summer insolation. Dynamic surges are simulated for the Cordilleran Ice Sheet under fixed low orbital forcing. These surges due to internal ice sheet-climate feedbacks could potentially be the mechanism for the millennial scale H-like events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...