GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Hydroacoustic and high-resolution seismic data reveal that glacial processes and slope instability extensively shaped shelf north of Svalbard and Nordaustlandet as well as the southern Yermak Plateau (YP). Glacial features of different shape and age are linked to the Middle to Upper Pleistocene glaciation history in the Arctic Ocean: (1) Mega-scale glacial lineations (MSGL) were formed either by an ice-shelf advance from Svalbard, or by a coherent mass of large-scale icebergs e exiting the Arctic Ocean across the YP; (2) quasi-linear, huge ploughmarks crosscutting the MSGL were formed by keels of a mega-iceberg or by several icebergs trapped in multi-year sea ice; (3) freshly-looking large iceberg ploughmarks; and (4) irregularly shaped smaller-scale ploughmarks incised by the keels of small single icebergs. In close proximity to NW Spitsbergen, a grounding-zone wedge was encountered that potentially represents the maximum extent of the youngest advance of the Svalbard-Barents ice sheet. The shelf and slope of Nordaustlandet were subject to the giant Hinlopen/Yermak Megaslide (HYM) some 30 ka ago. Seismic data acquired during an expedition in 2013 reveal complex internal deformation of the slope sediments, and partly incomplete secondary sliding processes of different generations can be identified. Gas seeping with enhanced methane concentrations identified in the water column, and paleo pockmarks and a former gas-pipe structure revealed by the seismic data are likely linked to the mass failure. Gas seeping is still active and together with the internal deformation of the sediments suggests that large parts of the current Nordaustlandet shelf and slope are preconditioned to fail completely in future.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-10
    Description: Grounding-zone wedges (GZW) have been mapped on the sea floor in various sectors of the formerly glaciated continental shelf around Antarctica. In most cases, these wedges record periods of grounding-line stillstands during ice-sheet retreat following the Last Glacial Maximum (~26-19 ka BP). The presence of GZWs along the axis of a palaeo-ice stream trough therefore indicates episodic retreat of the grounding line from its LGM to modern position. However, information about their internal structure is sparse, and precise chronological constraints for both the onset and the duration of the stillstands they represent are still lacking. Consequently, the role of GZW formation in modulating post-LGM ice-sheet retreat cannot be reliably quantified. This information is vital, however, for calculating reliable retreat rates during the past, which are essential for evaluating and understanding the significance of modern retreat rates, particularly for the rapidly changing Amundsen Sea sector. Here we present a novel combination of swath bathymetric, reflection seismic, and sub-bottom sediment profiler data from a newly discovered stacked GZW in the Cosgrove-Abbot palaeo-ice stream trough in the eastern Amundsen Sea Embayment. In total, six generations of overlapping GZWs were mapped over a distance of ~40 km. We will present first estimates of GZW volumes through integration of the different geophysical datasets. Additionally, we recovered eight sediment cores, sampling most of the individual GZWs within the stack, which may allow us to establish age constraints for each grounding-line retreat episode. Together with the estimated GZW volumes, the ages from sediment cores may also enable the calculation of sediment flux rates at grounding lines, which remain elusive for Antarctic grounding lines. This knowledge will help refine available post-LGM retreat chronologies for the Amundsen Sea Embayment, which, in turn, serve as a basis for validating and improving ice-sheet models in an area where precise simulations of future retreat are urgently needed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-10
    Description: The MARUM-MeBo (abbreviation for Meeresboden-Bohrgerät, the German expression for seafloor drill rig) is a robotic drilling system that is developed since 2004 at the MARUM Center for Marine Environmental Sciences at the University of Bremen in close cooperation with Bauer Maschinen GmbH and other industry partners. The MARUM-MeBo drill rigs can be deployed from multipurpose research vessel like, RV MARIA S. MERIAN, RV METEOR, RV SONNE and RV POLARSTERN and are used for getting long cores both in soft sediments as well as hard rocks in the deep sea. The first generation drill rig, the MARUM-MeBo70 is dedicated for drilling depths of more than 70 m (Freudenthal and Wefer, 2013). Between 2005 and 2017 it was deployed on 18 research expeditions and drilled more than. 3 km into different types of lithologies including carbonate and crystalline rocks, gas hydrates, sands and gravel, glacial till and hemipelagic mud with an average recovery rate of 67 %. In February and March 2017 the MeBo70 was used on the West Antarctic continental shelf in the Amundsen Sea Embayment for the first time. The goal of the deployment on RV Polarstern expedition PS104 was to recover a series of sediment cores from different ages that will provide material for investigating the glaciation history of this area known as the most dynamic drainage area of the West Antarctic Ice Sheet. In this presentation we will focus on the operational experiences of this first deployment of a multi-barrel sea floor drill rig on the Antarctic continental shelf. References: Freudenthal, T and Wefer, G (2013) Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo. Geoscientific Instrumentation, Methods and Data Systems, 2(2). 329-337. doi:10.5194/gi-2-329-2013
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Palaeogeography Palaeoclimatology Palaeoecology, ELSEVIER SCIENCE BV, 539(109506), ISSN: 0031-0182
    Publication Date: 2019-12-22
    Description: Density-driven mass movement deposits (MMDs) were mapped throughout the Quaternary sedimentary record of Lake El'gygytgyn (NE Siberia) using high-resolution acoustic data. Three different acoustic facies types were identified in the lake: (1) pelagic sediment, (2) plastic flow deposits and (3) turbidites. Deposits from plastic flows are dominantly present proximal to the lakes' slopes, whereas deposits from turbidity currents occur more spatially distributed. During glacial times, the distribution of MMDs was more uniform, while during interglacial periods, MMDs were deposited predominantly close to the slope of the northwestern area. Furthermore, the overall number of MMDs and accumulated sediment volume significantly varies between glacial/interglacial periods. About 1.6 times more MMDs were mapped during interglacials, contributing to a 3.5 times higher sediment volume. The main reason for this large difference is that a significant increase in plastic flows were formed during interglacials, which account for a much larger volume of sediments when compared with the glacial intervals characterized by increased amount of turbidites. It appears that the most important source areas for MMDs are located at the northern and western shores. Cycles of lake level changes caused by variations in climate conditions between glacials and interglacials are likely the main trigger mechanism for the generation of these MMDs. The climate-dependent genesis and partly erosive potential influencing the sedimentary record contain implications to consider for future paleo-environmental reconstructions in lacustrine settings.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-22
    Description: This paper presents a detailed record of volcanism extending back to ~80 kyr BP for southern South America using the sediments of Laguna Potrok Aike (ICDP expedition 5022; Potrok Aike Maar Lake Sediment Archive Drilling Project - PASADO). Our analysis of tephra includes the morphology of glass, the mineral componentry, the abundance of glass-shards, lithics and minerals, and the composition of glass- shards in relation to the stratigraphy. Firstly, a reference database of glass compositions of known eruptions in the region was created to enable robust tephra correlations. This includes data published elsewhere, in addition to new glass-shard analyses of proximal tephra deposits from Hudson (eruption units H1 and H2), Aguilera (A1), Reclus (R1, R2-3), Mt Burney (MB1, MB2, MBx, MB1910) and historical Lautaro/Viedma deposits. The analysis of the ninety-four tephra layers observed in the Laguna Potrok Aike sedimentary sequence reveals that twenty-five tephra deposits in the record are the result of pri- mary fallout and are sourced from at least three different volcanoes in the Austral Andean Volcanic Zone (Mt Burney, Reclus, Lautaro/Viedma) and one in the southernmost Southern Volcanic Zone (Hudson). One new correlation to the widespread H1 eruption from Hudson volcano at 8.7 (8.6e9.0) cal ka BP during the Quaternary is identified. The identification of sixty-five discrete deposits that were pre- dominantly volcanic ashes (glass and minerals) with subtle characteristics of reworking (in addition to three likely reworked tephra, and one unknown layer) indicates that care must be taken in the analysis of both visible and invisible tephra layers to decipher their emplacement mechanisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-22
    Description: Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, density, and porosity measurements from Hole M0077A that reveal unusual physical properties of the peak-ring rocks. Across the boundary between post-impact sedimentary rock and suevite (impact melt-bearing breccia) we measure a sharp decrease in velocity and density, and an increase in porosity. Velocity, density, and porosity values for the suevite are 2900–3700 m/s, 2.06–2.37 g/cm3, and 20–35%, respectively. The thin (25 m) impact melt rock unit below the suevite has velocity measurements of 3650–4350 m/s, density measurements of 2.26–2.37 g/cm3, and porosity measurements of 19–22%. We associate the low velocity, low density, and high porosity of suevite and impact melt rock with rapid emplacement, hydrothermal alteration products, and observations of pore space, vugs, and vesicles. The uplifted granitic peak ring materials have values of 4000–4200 m/s, 2.39–2.44 g/cm3, and 8–13% for velocity, density, and porosity, respectively; these values differ significantly from typical unaltered granite which has higher velocity and density, and lower porosity. The majority of Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable rock damage, and are consistent with numerical model predictions for peak-ring formation where the lithologies present within the peak ring represent some of the most shocked and damaged rocks in an impact basin. We integrate our results with previous seismic datasets to map the suevite near the borehole. We map suevite below the Paleogene sedimentary rock in the annular trough, on the peak ring, and in the central basin, implying that, post impact, suevite covered the entire floor of the impact basin. Suevite thickness is 100–165 m on the top of the peak ring but 200 m in the central basin, suggesting that suevite flowed downslope from the collapsing central uplift during and after peak-ring formation, accumulating preferentially within the central basin.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-06-01
    Description: Lacustrine sediments retrieved from Laguna Potrok Aike in the framework of the Potrok Aike Maar Lake Sediment Archive Drilling Project (PASADO) offer the possibility to investigate climate variations of the past ~51 cal ka BP in Southern Hemispheric midlatitudes, Argentinean Patagonia. This study focuses on short-term cyclicities in the Ca and magnetic susceptibility data sets between 51 and 15 cal ka BP. The record yields a climate pattern with a periodicity of 1.5 ka during Marine Oxygen Isotope Stage 2 (MIS 2) detected in the Southern Hemisphere from 31 to 17 cal ka BP for the first time. MIS 2 is known for constantly cold temperatures, whereas prominent climate variations paced by a 1.5 ka periodicity occurred during MIS 3. Our study documents that minor latitudinal oscillations of the Southern Hemispheric westerlies and the polar easterlies with a 1.5 ka periodicity also took place during MIS 2. However, we assume that because of a major northward displacement of the Southern Hemispheric westerlies, these oscillations did not sufficiently affect the zone of Circumpolar Deep Waters and an increased greenhouse effect by upwelling of CO2-rich deep waters did not occur. This mechanism illustrates why prominent climate events fail to appear during MIS 2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Geomorphology, ELSEVIER SCIENCE BV, 382, ISSN: 0169-555X
    Publication Date: 2021-03-17
    Description: Acoustic and detailed swath bathymetry data revealed a systematic picture of submarine landslides on the Siberian part of Lomonosov Ridge. Whereas numerous studies on mass movement exist along the margin of the Arctic Ocean less is known from central Arctic. A regional survey comprising swath bathymetry, sediment echo sounder and multichannel seismic profiling was performed on the southeastern Lomonosov Ridge. The data provide constraints on the present-day morphology of the Siberian part of Lomonosov Ridge, between 81°–84°N and 140°–146°E. We mapped twelve crescent-shaped escarpments located on both flanks on the crest of Lomonosov Ridge. The escarpments are 2.1 to 10.2 km wide, 1.7 to 8.2 km long and 125 to 851 m high from which 58 to 207 m are occupied by crescent-shaped headscarps. Subbottom data show chaotic reflections within most of the escarpment areas. The unit is overlain by ~110–340 m of semi-coherent parallel reflections. At its bottom the chaotic reflections are limited by a partly eroded high-amplitude reflection sequence that is inclined with 〈1° basinwards. We find the escarpments to be remnants of submarine landslide events that mobilized 0.09 to 7.58 km3 of sediments between mid Pliocene and mid Miocene. The relatively small amounts of mobilized sediments seem to be typical for the Lomonosov Ridge. The epoch corresponds to the ongoing subsidence of the Lomonosov Ridge below sea level. During that time deposition and the load of sediments changed. We suggest that changes in sediment type preconditioned, and co-occurring earthquakes finally triggered the submarine landslides.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-05-07
    Description: The Neogene opening and subsequent widening of the only deep-water connection between the Atlantic-Arctic Gateway (AAG) had fundamental influence on global ocean circulation, paleoclimate evolution, and on sedimentation processes in adjacent ocean basins and continental margins. To unravel the evolution of the Fram Strait on tectonic time scales we combined seismic reflection data with sedimentological and stratigraphic information from ODP Site 909 (Molloy Basin). We derived a higher resolution seismic stratigraphy that is based on a revised chronology for Site 909 and an improved core-log-seismic integration. A revised interpretation of magnetostratigraphic boundaries, shifts previously used stratigraphies for Site 909 to significantly younger ages in the time interval from c. 15 to 3 Ma and allows a more comprehensive correlation with seismic markers from the western Barents Sea margin and also the adjacent Yermak Plateau.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...