GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-06-17
    Description: Siwi caldera, in the Vanuatu arc (Tanna island), is a rare volcanic complex where both persistent eruptive activity (Yasur volcano) and rapid block resurgence (Yenkahe horst) can be investigated simultaneously during a post-caldera stage. Here we provide new constraints on the feeding system of this volcanic complex, based on a detailed study of the petrology, geochemistry and volatile content of Yasur–Siwi bulk-rocks and melt inclusions, combined with measurements of the chemical composition and mass fluxes of Yasur volcanic gases. Major and trace element analyses of Yasur–Siwi volcanic rocks, together with literature data for other volcanic centers, point to a single magmatic series and possibly long-lived feeding of Tanna volcanism by a homogeneous arc basalt. Olivine-hosted melt inclusions show that the parental basaltic magma, which produces basaltic-trachyandesites to trachyandesites by ~50–70% crystal fractionation, is moderately enriched in volatiles (~1 wt % H 2 O, 0·1 wt % S and 0·055 wt % Cl). The basaltic-trachyandesite magma, emplaced at between 4–5 km depth and the surface, preserves a high temperature (1107 ± 15°C) and constant H 2 O content (~1 wt %) until very shallow depths, where it degasses extensively and crystallizes. These conditions, maintained over the past 1400 years of Yasur activity, require early water loss during basalt differentiation, prevalent open-system degassing, and a relatively high heat flow (~10 9 W). Yasur volcano releases on average ≥ 13·4 x 10 3 tons d –1 of H 2 O and 680 tons d –1 of SO 2 , but moderate amounts of CO 2 (840 tons d –1 ), HCl (165 tons d –1 ), and HF (23 tons d –1 ). Combined with melt inclusion data, these gas outputs constrain a bulk magma degassing rate of ~5 x 10 7 m 3 a –1 , about a half of which is due to degassing of the basaltic-trachyandesite. We compute that 25 km 3 of this magma have degassed without erupting and have accumulated beneath Siwi caldera over the past 1000 years, which is one order of magnitude larger than the accumulated volume uplift of the Yenkahe resurgent block. Hence, basalt supply and gradual storage of unerupted degassed basaltic-trachyandesite could easily account for (or contribute to) the Yenkahe block resurgence.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-20
    Description: Siwi caldera, in the Vanuatu arc (Tanna island), is a rare volcanic complex where both persistent eruptive activity (Yasur volcano)and rapid block resurgence (Yenkahe horst) can be investigated simultaneously during a post-caldera stage. Here we provide new constraints on the feeding system of this volcanic complex, based on a detailed study of the petrology, geochemistry and volatile content of Yasur^Siwi bulk-rocks and melt inclusions, combined with measurements of the chemical composition and mass fluxes of Yasur volcanic gases. Major and trace element analyses of Yasur^ Siwi volcanic rocks, together with literature data for other volcanic centers, point to a single magmatic series and possibly long-lived feeding of Tanna volcanism by a homogeneous arc basalt. Olivine-hosted melt inclusions show that the parental basaltic magma, which produces basaltic-trachyandesites to trachyandesites by 50^70% crystal fractionation, is moderately enriched in volatiles ( 1wt % H2O, 0·1wt % S and 0·055 wt % Cl). The basaltic-trachyandesite magma, emplaced at between 4^5 km depth and the surface, preserves a high temperature (1107 158C) and constant H2O content ( 1wt %) until very shallow depths, where it degasses extensively and crystallizes. These conditions, maintained over the past 1400 years of Yasur activity, require early water loss during basalt differentiation, prevalent open-system degassing, and a relatively high heat flow ( 109W). Yasur volcano releases on average 13·4 103 tons d 1 of H2O and 680 tons d 1 of SO2, but moderate amounts of CO2 (840 tons d 1), HCl (165 tons d 1), and HF (23 tons d 1). Combined with melt inclusion data, these gas outputs constrain a bulk magma degassing rate of 5 107 m3 a 1, about a half of which is due to degassing of the basaltic-trachyandesite. We compute that 25 km3 of this magma have degassed without erupting and have accumulated beneath Siwi caldera over the past 1000 years, which is one order of magnitude larger than the accumulated volume uplift of the Yenkahe resurgent block. Hence, basalt supply and gradual storage of unerupted degassed basaltictrachyandesite could easily account for (or contribute to) the Yenkahe block resurgence.
    Description: Published
    Description: 1077-1105
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: restricted
    Keywords: Vanuatu arc ; Yasur ; gas fluxes ; volatiles ; melt inclusions ; resurgent block ; volcano thermal budget ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-07
    Description: Ambrym volcano, in the Vanuatu arc, is one of the most active volcanoes of the Southwest Pacific region, where persistent lava lake and/or Strombolian activity sustains voluminous gas plume emissions. Here we report on the first comprehensive budget for the discharge ofmajor,minor, trace and radioactive volatile species fromAmbrymvolcano, as well as the first data for volatiles dissolved in its basaltic magma (olivine-hosted melt inclusions). In situ MultiGAS analysis of H2O, CO2, SO2 and H2S in crater rim emissions, coupled with filter-pack determination of SO2, halogens, stable and radioactive metals demonstrates a common magmatic source for volcanic gases emitted by its two main active craters, Benbow and Marum. These share a high water content (~93 mol%), similar S/Cl, Cl/ F, Br/Cl molar ratios, similar (210Po/210Pb) and (210Bi/210Pb) activity ratios, as well as comparable proportions in most trace metals. Their difference in CO2/SO2 ratio (1.0 and 5.6–3.0, respectively) is attributed to deeper gasmelt separation at Marum (Strombolian explosions) than Benbow (lava lake degassing) during our measurements in 2007. Airborne UV sensing of the SO2 plume flux (90 kg s−1 or 7800 tons d−1) demonstrates a prevalent degassing contribution (~65%) of Benbow crater in that period and allows us to quantify the total volatile fluxes duringmedium-level eruptive activity of the volcano. Results reveal that Ambrym ranks among the most powerful volcanic gas emitters on Earth, producing between 5% and 9% of current estimates for global subaerial volcanic emissions of H2O, CO2, HCl, Cu, Cr, Cd, Au, Cs and Tl, between 10% and 17% of SO2, HF, HBr, Hg, 210Po and 210Pb, and over 30% of Ag, Se and Sn. Global flux estimates thus need to integrate its contribution and be revised accordingly. Prodigious gas emission from Ambrym does not result from an anomalous volatile enrichment nor a differential excess degassing of its feedingbasalt: this latter contains relativelymodest dissolved amounts ofH2O(≤1.3wt%), CO2 (~0.10 wt%), S (0.075 wt%) and Cl (0.05 wt%), and its degassing under prevalent closed-systemconditions well reproduces the composition of emitted volcanic gases. Instead,we show that the gas discharge is sustained by a very high basalt supply rate of 25m3 s−1, from a large (~ 0.5 km3)magma reservoir probably emplaced at ~3.8 km depth below the summit caldera according to both the H2O-CO2 content of bubble-free melt inclusions and preliminary seismic data. Radioactive disequilibria in the volcanic gases constrain that this reservoir may be entirely renewed in about 240 days. The comparatively low magma extrusion rate requires extensive convective overturn of the basaltic magma column and recycling of the unerupted (denser) degassed magma in the plumbing system, in agreement with textural features of erupted products. Finally, our results suggest that the Indian MORB-type mantle source of Ambrym basalts is modestly enriched in slab-derived water and other volatiles, in agreement with the prevalent volcanoclastic nature of subducted sediments and their lower subduction rate under the central Vanuatu arc due to its collision with the D'Entrecasteaux Ridge.
    Description: Published
    Description: 378-402
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Ambrym ; Vanuatu ; Volatile fluxes ; Magma degassing budget ; Magma reservoir ; Radioactive disequilibria ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...