GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 29 (1995), S. 797-807 
    ISSN: 1573-5028
    Keywords: maize ; RNA-binding protein ; phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The maize RNA-binding protein MA16 is a non-ribosomal nucleolar protein widely distributed in different maize tissues. We have previously shown that the MA16 protein binds preferentially to guanosine-and uridine-rich sequences. As a step towards the identification of specific targets with which MA16 interacts within the cell, we investigated the RNA-binding affinities and several other aspects of the protein by using binding assays and immunochemistry. The MA16 protein showed a wide spectrum of RNA-binding activities with lower affinities to several RNAs that was salt and heparin-sensitive indicative of electrostatic interactions, and higher affinities to particular RNAs including rRNA and translatable mRNA sequences. Among the RNAs found associated with MA16 protein was that encoding MA16 itself. This observation raises the possibility that MA16 gene expression could be self-regulated. Immunoprecipitation studies showed that in vivo MA16 was phosphorylated and that MA16 interacts with RNAs through complex association with several proteins. These results suggest that both phosphorylation and interaction with other proteins may be involved in determining RNA-binding specificities of MA16 in the cell.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: maize ; ABA-induced gene ; protein phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ABA-induced MA12 cDNA from maize, which encodes a set of highly phosphorylated embryo proteins, was used to isolate the corresponding genomic clone. This gene, called RAB-17 (responsive to ABA), encodes a basic, glycine-rich protein (mol. wt. 17 164) containing a cluster of 8 serine residues, seven of them contiguous. It is a homologue of the rice RAB-21 gene (Mundy J, Chua NH, EMBO J 7; 2279–2286, 1988). Phosphoamino acid analysis of the isolated protein indicates that only the serine residues are phosphorylated and a putative casein-type kinase phosphorylatable sequence was identified in the protein. The pattern of expression and in vivo phosphorylation of the RAB-17 protein was studied during maize embryo germination and in calli of both meristematic or embryonic origin. ABA treatment induced the synthesis of RAB-17 mRNA and protein in calli, however, the RAB-17 proteins were found to be highly phosphorylated only in embryos.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: Arabidopsis thaliana ; cap-binding protein ; eIF4E-binding protein ; initiation factor ; lipoxygenase ; translation jasmonic acid ; two-hybrid screen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The eukaryotic initiation factor 4E (eIF4E) emerged recently as a target for different types of regulation affecting translation. In animal and yeast cells, eIF4E-binding proteins modulate the availability of eIF4E. A search for plant eIF4E-binding proteins from Arabidopsis thaliana using the yeast genetic interaction system identified a clone encoding a lipoxygenase type 2 (AtLOX2). In vitro and in vivo biochemical assays confirm an interaction between AtLOX2 and plant eIF4E(iso) factor. A two-hybrid assay revealed that AtLOX2 is also able to interact with both wheat initiation factors 4E and 4E(iso). Deletion analysis maps the region of AtLOX2 involved in interaction with AteIF(iso)4E between amino acids 175 and 232. A sequence related to the conserved motif present in several eIF4E-binding proteins was found in this region. Furthermore, the wheat p86 subunit, a component of the plant translation eIF(iso)4F complex, was found to interfere with the AteIF(iso)4E-AtLOX2 interaction suggesting that p86 and AtLOX2 compete for the same site on eIF(iso)4E. These results may reflect a link between eIF4Es factors mediating translational control with LOX2 activity, which is probably conserved throughout the plant kingdom.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...