GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Galeras volcano (4,200 m high), a recent active cone in southern Colombia, 7 km west of Pasto (population of 〉300,000) (Fig. 1), was chosen as South America's 'Decade volcano', to be studied extensively during the International Decade of Natural Disaster Reduction. Galeras showed signs of unrest ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0819
    Keywords: Key words El Chichón Volcano ; Crater Lake ; Hydrothermal system ; Volcanic gases ; Stable isotopes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The 1982 eruption of El Chichón volcano ejected more than 1 km3 of anhydrite-bearing trachyandesite pyroclastic material to form a new 1-km-wide and 300-m-deep crater and uncovered the upper 500 m of an active volcano-hydrothermal system. Instead of the weak boiling-point temperature fumaroles of the former lava dome, a vigorously boiling crater spring now discharges  / 20 kg/s of Cl-rich (∼15 000 mg/kg) and sulphur-poor ( / 200 mg/kg of SO4), almost neutral (pH up to 6.7) water with an isotopic composition close to that of subduction-type magmatic water (δD=–15‰, δ18O=+6.5‰). This spring, as well as numerous Cl-free boiling springs discharging a mixture of meteoric water with fumarolic condensates, feed the crater lake, which, compared with values in 1983, is now much more diluted (∼3000 mg/kg of Cl vs 24 030 mg/kg), less acidic (pH=2.6 vs 0.56) and contains much lower amounts of S ( / 200 mg/kg of SO4, vs 3550 mg/kg) with δ34S=0.5–4.2‰ (+17‰ in 1983). Agua Caliente thermal waters, on the southeast slope of the volcano, have an outflow rate of approximately 100 kg/s of 71  °C Na–Ca–Cl water and are five times more concentrated than before the eruption (B. R. Molina, unpublished data). Relative N2, Ar and He gas concentrations suggest extensional tectonics for the El Chichón volcanic centre. The 3He/4He and 4He/20Ne ratios in gases from the crater fumaroles (7.3Ra, 2560) and Agua Caliente hot springs (5.3Ra, 44) indicate a strong magmatic contribution. However, relative concentrations of reactive species are typical of equilibrium in a two-phase boiling aquifer. Sulphur and C isotopic data indicate highly reducing conditions within the system, probably associated with the presence of buried vegetation resulting from the 1982 eruption. All Cl-rich waters at El Chichón have a common source. This water has the appearence of a "partially matured" magmatic fluid: condensed magmatic vapour neutralized by interaction with fresh volcaniclastic deposits and depleted in S due to anhydrite precipitation. Shallow ground waters emerging around the volcano from the thick cover of fresh pumice deposits (Red waters) are Ca–SO4–rich and have a negative oxygen isotopic shift, probably due to ongoing formation of clay at low temperatures.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: It is well established that mantle plumes are the main conduits for upwelling geochemically enriched material from Earth's deep interior. The fashion and extent to which lateral flow processes at shallow depths may disperse enriched mantle material far (〉1,000 km) from vertical plume conduits, however, remain poorly constrained. Here, we report He and C isotope data from 65 hydrothermal fluids from the southern Central America Margin (CAM) which reveal strikingly high 3 He/ 4 He (up to 8.9R A ) in low-temperature (≤50 °C) geothermal springs of central Panama that are not associated with active volcanism. Following radiogenic correction, these data imply a mantle source 3 He/ 4 He 〉10.3R A (and potentially up to 26R A , similar to Galápagos hotspot lavas) markedly greater than the upper mantle range (8 ± 1R A ). Lava geochemistry (Pb isotopes, Nb/U, and Ce/Pb) and geophysical constraints show that high 3 He/ 4 He values in central Panama are likely derived from the infiltration of a Galápagos plume–like mantle through a slab window that opened ∼8 Mya. Two potential transport mechanisms can explain the connection between the Galápagos plume and the slab window: 1) sublithospheric transport of Galápagos plume material channeled by lithosphere thinning along the Panama Fracture Zone or 2) active upwelling of Galápagos plume material blown by a “mantle wind” toward the CAM. We present a model of global mantle flow that supports the second mechanism, whereby most of the eastward transport of Galápagos plume material occurs in the shallow asthenosphere. These findings underscore the potential for lateral mantle flow to transport mantle geochemical heterogeneities thousands of kilometers away from plume conduits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-19
    Description: Nitrogen is the main constituent of the Earth's atmosphere, but its provenance in the Earth's mantle remains uncertain. The relative contribution of primordial nitrogen inherited during the Earth's accretion versus that subducted from the Earth's surface is unclear1-6. Here we show that the mantle may have retained remnants of such primordial nitrogen. We use the rare 15N15N isotopologue of N2 as a new tracer of air contamination in volcanic gas effusions. By constraining air contamination in gases from Iceland, Eifel (Germany) and Yellowstone (USA), we derive estimates of mantle δ15N (the fractional difference in 15N/14N from air), N2/36Ar and N2/3He. Our results show that negative δ15N values observed in gases, previously regarded as indicating a mantle origin for nitrogen7-10, in fact represent dominantly air-derived N2 that experienced 15N/14N fractionation in hydrothermal systems. Using two-component mixing models to correct for this effect, the 15N15N data allow extrapolations that characterize mantle endmember δ15N, N2/36Ar and N2/3He values. We show that the Eifel region has slightly increased δ15N and N2/36Ar values relative to estimates for the convective mantle provided by mid-ocean-ridge basalts11, consistent with subducted nitrogen being added to the mantle source. In contrast, we find that whereas the Yellowstone plume has δ15N values substantially greater than that of the convective mantle, resembling surface components12-15, its N2/36Ar and N2/3He ratios are indistinguishable from those of the convective mantle. This observation raises the possibility that the plume hosts a primordial component. We provide a test of the subduction hypothesis with a two-box model, describing the evolution of mantle and surface nitrogen through geological time. We show that the effect of subduction on the deep nitrogen cycle may be less important than has been suggested by previous investigations. We propose instead that high mid-ocean-ridge basalt and plume δ15N values may both be dominantly primordial features.
    Description: Published
    Description: 367–371
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-01-12
    Description: The South Sandwich Volcanic Arc is one of the most remote and enigmatic arcs on Earth. Sporadic observations from rare cloudfree satellite images—and even rarer in situ reports—provide glimpses into a dynamic arc system characterised by persistent gas emissions and frequent eruptive activity. Our understanding of the state of volcanic activity along this arc is incomplete compared to arcs globally. To fill this gap, we present here detailed geological and volcanological observations made during an expedition to the South Sandwich Islands in January 2020.We report the first in situ measurements of gas chemistry, emission rate and carbon isotope composition from along the arc. We show that Mt. Michael on Saunders Island is a persistent source of gas emissions, releasing 145±59 t day−1 SO2 in a plume characterised by a CO2/SO2 molar ratio of 1.8 ± 0.2. Combining this CO2/SO2 ratio with our independent SO2 emission rate measured near simultaneously, we derive a CO2 flux of 179 ± 76 t day−1. Outgassing from low temperature (90–100 °C) fumaroles is pervasive at the active centres of Candlemas and Bellingshausen, with measured gas compositions indicative of interaction between magmatic fluids and hydrothermal systems. Carbon isotope measurements of dilute plume and fumarole gases from along the arc indicate a magmatic δ13C of − 4.5 ± 2.0‰. Interpreted most simply, this result suggests a carbon source dominated by mantle-derived carbon. However, based on a carbon mass balance from sediment core ODP 701, we show that mixing between depleted upper mantle and a subduction component composed of sediment and altered crust is also permissible.We conclude that, although remote, the South Sandwich Volcanic Arc is an ideal tectonic setting in which to explore geochemical processes in a young, developing arc.
    Description: This expedition was funded by public donations raised by Quark Expeditions Ltd., by the Government of South Georgia and the South Sandwich Islands (GSGSSI) and by individual contributions. This work was carried out under RAP 2019/025 issued by GSGSSI. EJL was supported by a Leverhulme Early Career Fellowship. A.A. and M.B. acknowledge funding from Miur (Grant N. 2017LMNLAW). K.W. acknowledges support from the Mount Everest Foundation (20-06)
    Description: Published
    Description: id 3
    Description: 4V. Processi pre-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: South Sandwich Volcanic Arc ; Volcanic gas emissions ; Volcanic activity ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-18
    Description: Some 300–600 Tg of volatiles are globally vented each year by arc volcanism. Such arc gas emissions have contributed to past and present-day evolution of the Earth atmosphere and climate by recycling mineral-bound volatiles subducted along active slabs. Carbon dioxide (CO2) and total sulphur (ST) are, after water, the major components of volcanic arc gases. Understanding their relative abundances (e.g., the CO2/ST ratio) in arc volcanic gases is important to constrain origin and recycling efficiency of these volatiles along the subduction factory, and to better constrain the global arc volcanic CO2 flux.Here,we review currently available information on global variations of volcanic arc CO2/ST gas ratios. Weanalyse a dataset of N2000 published volcanic arc gasmeasurements that comprise (i) low-temperature hydrothermal gas emissions, in which ST is dominated by hydrothermal hydrogen sulphide (H2S), and (ii) high temperature “magmatic” gases rich in sulphur dioxide (SO2). We show that the global CO2/ST population of hydrothermal gases is mainly controlled by S loss to hydrothermal fluids/ rocks.Wethen select a subset of high-temperature (≥450 °C) arc gaseswhich, being less affected by S hydrothermal loss, can be used to infer the “deep” source of volatiles. Using a subset of time-averaged high-T gas compositions for 56 arc volcanoes, we identify sizeable along-arc and inter-arc variations in the “magmatic” arc gas CO2/ST ratio, which we ascribe to distinct volatile origins in the magma generation/storage zone. In the attempt to resolve the slab vs. crustal contributions to arc gas budgets, we explore the global association between volcanic gas CO2/ST ratios and non-volatile (trace elements) tracers in arc magmas. For the first time in a global study,we find evidence for higher carbon output (CO2/ST) in arcswhere carbonate sediment subducts on the seafloor. Indeed,most arc volcanoes exhibit gas vs. trace element relationships that are explained by addition of slabsediment melts±fluids to themantlewedge.We also identify a subset of CO2-rich arc volcanoeswith unusually high CO2/ST ratios (Etna, Stromboli, Vulcano Island, Popocatépetl, Soufriere of St Vincent, Bromo and Merapi), which we interpret as the product of magma-limestone interactions in the upper crust. Evidence for this process comes from carbonate xenoliths and/or carbonate basement that characterise these volcanic systems. Although the mean global CO2/ST ratio of arc gas (~2.5) reflects a predominant source from subducted sediment, limestone-assimilation-derived C may account for a substantial (~19–32%) fraction of the present-day global arc budget, and may have contributed to elevated atmospheric CO2 levels and warmer climate in Earth's past. Our global CO2/ST vs. trace element association paves the way to identifying the gas signature of volcanoes (or arc segments) for which gas information is currently missing, and so improve our current global volcanic arc CO2 flux inventory.
    Description: Published
    Description: 24-47
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-07
    Description: Volcanic emissions are a critical pathway in Earth's carbon cycle. Here, we show that aerial measurements of volcanic gases using unoccupied aerial systems (UAS) transform our ability to measure and monitor plumes remotely and to constrain global volatile fluxes from volcanoes. Combining multi-scale measurements from ground-based remote sensing, long-range aerial sampling, and satellites, we present comprehensive gas fluxes-3760 ± [600, 310] tons day-1 CO2 and 5150 ± [730, 340] tons day-1 SO2-for a strong yet previously uncharacterized volcanic emitter: Manam, Papua New Guinea. The CO2/ST ratio of 1.07 ± 0.06 suggests a modest slab sediment contribution to the sub-arc mantle. We find that aerial strategies reduce uncertainties associated with ground-based remote sensing of SO2 flux and enable near-real-time measurements of plume chemistry and carbon isotope composition. Our data emphasize the need to account for time averaging of temporal variability in volcanic gas emissions in global flux estimates.
    Description: This research was enabled through the Alfred P. Sloan Foundation's support of the Deep Carbon Observatory Deep Earth Carbon Degassing program (DECADE). Part funding also came from the EPSRC CASCADE programme grant (EP/R009953/1). EJL was supported by a Leverhulme Trust Early Career Fellowship. KW was supported by the National Center for Nuclear Robotics (NCNR) EPSRC grant (EP/R02572X/1).
    Description: Published
    Description: eabb9103
    Description: 7TM.Sviluppo e Trasferimento Tecnologico
    Description: JCR Journal
    Keywords: UAS ; volcanic plume ; carbon cycle ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-05-27
    Description: Volcanoes are the main pathway to the surface for volatiles that are stored within the Earth. Carbon dioxide (CO2) is of particular interest because of its potential for climate forcing. Understanding the balance of CO2 that is transferred from the Earth's surface to the Earth's interior, hinges on accurate quantification of the long-term emissions of volcanic CO2 to the atmosphere. Here we present an updated evaluation of the world's volcanic CO2 emissions that takes advantage of recent improvements in satellite-based monitoring of sulfur dioxide, the establishment of ground-based networks for semi-continuous CO2-SO2 gas sensing and a new approach to estimate key volcanic gas parameters based on magma compositions. Our results reveal a global volcanic CO2 flux of 51.3 ± 5.7 Tg CO2/y (11.7 × 1011 mol CO2/y) for non-eruptive degassing and 1.8 ± 0.9 Tg/y for eruptive degassing during the period from 2005 to 2015. While lower than recent estimates, this global volcanic flux implies that a significant proportion of the surface-derived CO2 subducted into the Earth's mantle is either stored below the arc crust, is efficiently consumed by microbial activity before entering the deeper parts of the subduction system, or becomes recycled into the deep mantle to potentially form diamonds.
    Description: Deep Carbon Observatory
    Description: Published
    Description: id 18716
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-03-13
    Description: We here present the first chemical characterization of the volcanic gas plume issuing from the Santa Ana crater lake, a hyper-acidic crater lake (pH of -0.2 to 2.5) in north-western El Salvador. Our results, obtained during regular surveys in 2017 and 2018 using a Multi-GAS instrument, demonstrate an hydrous gas composition (H2O/SO2 ratios from 32 to 205), and SO2 as the main sulphur species (H2S/SO2 = 0.03-0.1). We also find that gas composition evolved during our investigated period, with the CO2/SO2 decreasing by one order of magnitude from March 2017 (37.2 ± 9.7) to 2018 (〈3). This compositional evolution toward more magmatic (SO2-rich) compositions is interpreted in the context of the long-term evolution of the volcano following its 2005 and 2007 eruptions. We find that, in spite of reduced (background-level) seismicity, the magmatic gas supply into the lake was one order of magnitude higher in March 2017 (Total Volatile Flux: 20,200-30,200 t/day; the total volatile flux is the sum of H2O+CO2+SO2+H2 fluxes in our specific case) than in the following periods (Total Volatile Flux: 615-4112 t/day). We propose that the elevated magmatic/hydrothermal transport in March 2017, combined with a 15% reduction in precipitation, caused the volume of the lake to decrease, ultimately reducing its sulfur absorbing and scrubbing capacity, and hence causing the gas plume CO2/SO2 ratio to decrease. The recently observed increases in temperature, acidity and salinity of the lake are consistent with this hypothesis. The small volume of Santa Ana lake, compared to other crater lakes such as the pre-2017 Poás (Costa Rica), Yugama (Japan), Ruapehu (New Zealand) and Kawah Ijen (Indonesia), makes it sensitive to variations in the underlying magmatic-hydrothermal system. We conclude that the installation of a continuous, fully-automated Multi-GAS is highly desirable to monitor any future change in lake plume chemistry, and hence state of volcanic activity.
    Description: Published
    Description: id 66
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-27
    Description: Volcanism and metamorphism are the principal geologic processes that drive carbon transfer from the interior of Earth to the surface reservoir.1–4 Input of carbon to the surface reservoir through volcanic degassing is balanced by removal through silicate weathering and the subduction of carbon-bearing marine deposits over million-year timescales. The magnitude of the volcanic carbon flux is thus of fundamental importance for stabilization of atmospheric CO2 and for long-term climate. It is likely that the “deep” carbon reservoir far exceeds the size of the surface reservoir in terms of mass;5,6 more than 99%of Earth’s carbon may reside in the core, mantle, and crust. The relatively high flux of volcanic carbon to the surface reservoir, combined with the reservoir’s small size, results in a short residence time for carbon in the ocean–atmosphere–biosphere system (~200 ka).7 The implication is that changes in the flux of volcanic carbon can affect the climate and ultimately the habitability of the planet on geologic timescales. In order to understand this delicate balance, we must first quantify the current volcanic flux of carbon to the atmosphere and understand the factors that control this flux.
    Description: Published
    Description: 188-236
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...