GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-11
    Description: The DARE e-science platform (http://project-dare.eu) offers innovative tools to ease scientific workflow development and execution exploiting efficient Cloud resources. It aims to enable on-demand numerical computations and analyses, fast large dataset handling, flexible and customisable workflow pipelines and complete provenance tracking. It also integrates available e-infrastructure services (e.g. EUDAT, EIDA) and can be linked to user developed interfaces. DARE is validated via two domain-specific pilots, one from the climate modelling community and one from the seismological research field. Focusing on the latter, the EPOS Use Case is driven by urgent issues and general user needs of solid Earth Science community, following developments and application standards in the computational seismology research society. This Use Case also benefits from the pioneering experience of previous European projects (e.g. VERCE, EPOS-IP) in this framework. We present here the development of a scientific workflow to perform a quick calculation of seismic source parameters after an earthquake. The workflow requirements include HPC calculations (on local-institutional or Cloud resources), fast data-intensive processing, provenance exploitation and seismic source inverse modelling tools. The DARE platform automatically conducts the required actions optimally mapped to computational resources, linking them together by managing intermediate data. It automatically deploys the necessary environment to perform on-demand transparent computations executing a dockerised version of the numerical simulation code on a Kubernetes cluster via a web API. Other API calls allow for remote, distributed execution of dispel4py workflows, used to describe the steps for data analysis and download of seismic recorded data via EIDA Research Infrastructure services. Well established scientific python codes, such as those for waveform misfit calculation and source inversion, are thus easily implemented in this flexible and modular structure, and executed at scale. Moreover, the pilot requirement of searching and reusing multiple simulations for the same earthquake strongly benefits from customisable management of metadata and lineage through the DARE platform exploiting the integration of S-ProvFlow with dispel4py.
    Description: Published
    Description: San Francisco, CA, USA
    Description: 3IT. Calcolo scientifico
    Keywords: e-Science platform ; scientific workflow ; provenance ; metadata ; cloud ; EPOS ; numerical simulations ; dispel4py
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: UEDIN, INGV, SCAI, KNMI, NCSR-D, KIT, GRNET
    Description: Published
    Description: 3IT. Calcolo scientifico
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-13
    Description: The VERCE project has pioneered an e-Infrastructure to support researchers using established simulation codes on high-performance computers in conjunction with multiple sources of observational data. This is accessed and organised via the VERCE science gateway that makes it convenient for seismologists to use these resources from any location via the Internet. Their data handling is made flexible and scalable by two Python libraries, ObsPy and dispel4py and by data services delivered by ORFEUS and EUDAT. Provenance driven tools enable rapid exploration of results and of the relationships between data, which accelerates understanding and method improvement. These powerful facilities are integrated and draw on many other e-Infrastructures. This paper presents the motivation for building such systems, it reviews how solid-Earth scientists can make significant research progress using them and explains the architecture and mechanisms that make their construction and operation achievable. We conclude with a summary of the achievements to date and identify the crucial steps needed to extend the capabilities for seismologists, for solid-Earth scientists and for similar disciplines.
    Description: Published
    Description: UK
    Description: 1SR. TERREMOTI - Servizi e ricerca per la Società
    Keywords: Computer Science - Distributed; Parallel; and Cluster Computing ; Computer Science - Distributed; Parallel; and Cluster Computing
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-25
    Description: Science benefits tremendously from mutual exchanges of information and pooling of effort and resources. The combination of different skills and diverse knowledge is a powerful capacity, source of new intuitions and creative insights. Therefore multidisciplinary approaches can be a great opportunity to explore novel scientific horizons. Collaboration is not only an opportunity, it is essential when tackling today’s global challenges by exploiting our fast growing wealth of data. In this paper we introduce the concept of Information-Powered Collaborations (IPC) — an abstraction that captures those requirements and opportunities. We propose a conceptual framework that partitions the inherent complexity of such dynamic environments and offers concrete tools and methods to thrive in the data revolution era. Such a framework promotes and enables information sharing from multiple heterogeneous sources that are independently managed. We present the results of assessing our approach as an IPC for solid-Earth sciences: the European Plate Observing System (EPOS).
    Description: Published
    Description: 421-437
    Description: 1VV. Altro
    Description: JCR Journal
    Keywords: metadata
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-30
    Description: The DARE platform has been designed to help research developers deliver user-facing applications and solutions over diverse underlying e-infrastructures, data and computational contexts. The platform is Cloud-ready, and relies on the exposure of APIs, which are suitable for raising the abstraction level and hiding complexity. At its core, the platform implements the cataloguing and execution of fine-grained and Python-based dispel4py workflows as services. Reflection is achieved via a logical knowledge base, comprising multiple internal catalogues, registries and semantics, while it supports persistent and pervasive data provenance. This paper presents design and implementation aspects of the DARE platform, as well as it provides directions for future development.
    Description: Published
    Description: San Diego (CA, USA)
    Description: 3IT. Calcolo scientifico
    Keywords: software platform ; cloud ; technology ; conceptualization ; data-driven science ; scientific workflows ; provenance ; workflow optimization
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-30
    Description: The DARE platform enables researchers and their developers to exploit more capabilities to handle complexity and scale in data, computation and collaboration. Today’s challenges pose increasing and urgent demands for this combination of capabilities. To meet technical, economic and governance constraints, application communities must use use shared digital infrastructure principally via virtualisation and mapping. This requires precise abstractions that retain their meaning while their implementations and infrastructures change. Giving specialists direct control over these capabilities with detail relevant to each discipline is necessary for adoption. Research agility, improved power and retained return on intellectual investment incentivise that adoption. We report on an architecture for establishing and sustaining the necessary optimised mappings and early evaluations of its feasibility with two application communities.
    Description: Published
    Description: San Diego (CA, USA)
    Description: 3IT. Calcolo scientifico
    Keywords: conceptualisation ; data-driven science ; scientific workflows ; provenance ; HPC on cloud ; Multi-everything CSCW
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...