GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-02-01
    Description: The 6 April 2009 Mw 6.3 L'Aquila earthquake, central Italy, has been recorded by the Irpinia Seismic Network (ISNet) about 250 km southeast of the epicenter. Up to 19 three-component accelerometer stations could be used to infer the main source parameters with different seismological methods. We obtained an approximate location of the event from arrival times and array-based back-azimuth measurements and estimated the local magnitude (6.1) from an attenuation relation for southern Italy. Assuming an omega-square spectral model, we inverted S-wave displacement spectra for moment magnitude (6.3), corner frequency (0.33 Hz), stress drop (2.5 MPa), and apparent stress (1.6 MPa). Waveform modeling using a point source and an extended-source model provided consistent moment tensors with a centroid depth around 6 km and a prevalently normal fault plane solution with a dominant directivity toward the southeast. The relatively high corner frequency and an overestimated moment magnitude of 6.4 from moment tensor inversions are attributed to the rupture directivity effect. To image the rupture geometry, we implemented a beamforming technique that back-projects the recorded direct P-wave amplitudes into the earthquake source region. A northwest-southeast striking rupture of 17 km length is imaged, propagating with an average velocity up to 3 km/s. This value is significantly higher than our estimate of 2.2 km/s from S-wave spectra. Our case study demonstrates that the use of array techniques and a dense accelerometer network can provide quick and robust estimates of source parameters of moderate-sized earthquakes located outside the network.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-01
    Description: We studied the ambient noise recorded at Irpinia Seismic Network (ISNet), a seismic network installed along the Campania–Lucania Apenninic chain (southern Italy), with the aim of characterizing the noise spectrum for each station as a function of time and the detection threshold of the network. For the latter purpose, we proposed a mixed indirect approach based on the signal-to-noise ratio (SNR) in the time domain, with parameterization in the frequency domain. The source signature is represented by the convolution of the Brune source time function with the Azimi attenuation curve. We found that 1.3 is the minimum magnitude an event should have to be detected at least at five stations with an SNR larger than five, wherever it occurs. We observed a space variability of the detection threshold as large as 0.3 units, ascribed to both the geometrical configuration of the network and the differences in the noise levels at the different stations. A sensitivity study indicates that the estimation of the detection threshold is robust for changes in the focal depths and stress drop, while it is strongly affected by the anelastic attenuation. In our case, changes of the reduced time t* in the range 0.015–0.035 s generate changes in the completeness threshold of 0.5 units.Noise levels were obtained by a statistical analysis on the power spectral density curves along almost three years of continuous data from 22 stations. We found that, at short periods, major time variations are generated by diurnal changes in the wind intensity and other meteorological factors. At longer periods, we retrieved the microseismic peak, resulting from the constructive interference of oceanic waves. We also found an additional peak between 2 and 4 s, correlated with the sea wave height along the Tyrrhenian coast.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-20
    Description: Earthquake early warning systems (EEWSs) are nowadays contributing to seismic risk mitigation actions, both in terms of losses and societal resilience, by issuing an alert promptly after the earthquake origin and before the ground-shaking impacts the target to be protected. In this work, we analyze the performance of network-based and stand-alone (on-site) early warning systems during the 2016–2017 central Italy sequence, characterized by events with magnitude as large as 6.5. For the largest magnitude event, both systems predict well the ground shaking nearby the event source, with a rate of success in the 85%–90% range, within the potential earthquake damage zone. However, the lead time, that is, the time available for security actions, is significantly larger for the network-based system. For the regional system, it increases to more than 10 s at 40 km from the event epicenter. The stand-alone system performs better in the near-source region, still showing a positive albeit small lead time (〈2 s). Far away from the source (〉60 km), the performances slightly degrade, mostly owing to the large uncertainty in the attenuation relationships. This study opens up the possibility for making an operational EEWS in Italy, based on the available acceleration networks, provided that the delay due to data telemetry has to be reduced.
    Description: Published
    Description: 1-12
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-20
    Description: The complexity of coseismic slip distributions influences the tsunami hazard posed by local and, to a certain extent, distant tsunami sources. Large slip concentrated in shallow patches was observed in recent tsunamigenic earthquakes, possibly due to dynamic amplification near the free surface, variable frictional conditions or other factors. We propose a method for incorporating enhanced shallow slip for subduction earthquakes while preventing systematic slip excess at shallow depths over one or more seismic cycles. The method uses the classic k−2 stochastic slip distributions, augmented by shallow slip amplification. It is necessary for deep events with lower slip to occur more often than shallow ones with amplified slip to balance the long-term cumulative slip. We evaluate the impact of this approach on tsunami hazard in the central and eastern Mediterranean Sea adopting a realistic 3D geometry for three subduction zones, by using it to model ~ 150,000 earthquakes with 𝑀𝑤 from 6.0 to 9.0. We combine earthquake rates, depth-dependent slip distributions, tsunami modeling, and epistemic uncertainty through an ensemble modeling technique. We found that the mean hazard curves obtained with our method show enhanced probabilities for larger inundation heights as compared to the curves derived from depth-independent slip distributions. Our approach is completely general and can be applied to any subduction zone in the world.
    Description: Published
    Description: 1497–1520
    Description: 3T. Sorgente sismica
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-20
    Description: Structures may be subjected to damage and deterioration over different timescales, and monitoring their health status may allow to perform maintenance actions before the functionality limit is reached. Masonry arch bridges, in particular, are sensitive to the bearings loss produced by scour of the streambed soil at the pier foundations. In this study, we measured the changes in the elastic properties of a 1:2 scaled model of a masonry arch bridge built in the laboratory to study the evolution of the damage mechanism related to the application of foundation movements. Specifically, the bridge is realized to model the effect of erosion of the ground underneath the central pier. We analysed the accelerometric records acquired along the structure generated by a sledgehammer hitting the bridge walls. We used the method of coda wave interferometry to detect the changes in the elastic properties of the medium. After selecting the specific frequency band exciting coda waves, we progressively measured the time lag between signals acquired in the intact and two damaged stages of the bridge for each source–receiver couple, and we fit the data to get the relative wave velocity changes. We found that the average relative velocity changes for the two damaged steps are Δv/v = −5.08 ± 0.08% and Δv/v = −8.2 ± 0.6%, consistently measured at all the analysed source–receiver couples. These values correspond to an average estimation of the velocity changes occurred within the structure, because the associated wavelengths are comparable with the bridge size and the damage is spread over a large portion of the structure.
    Description: Published
    Description: e1976
    Description: 4T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: bridge ; damage ; elastic waves ; health monitoring ; interferometry ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-20
    Description: We extracted the Green's functions from cross correlation of ambient noise recorded at broadband stations located across the Apennine belt, Southern Italy. Continuous records at 26 seismic stations acquired for 3 years were analyzed. We found the emergence of surface waves in the whole range of the investigated distances (10–140 km) with energy confined in the frequency band 0.04–0.09 Hz. This phase reproduces Rayleigh waves generated by earthquakes in the same frequency range. Arrival time of Rayleigh waves was picked at all the couples of stations to obtain the average group velocity along the path connecting the two stations. The picks were inverted in separated frequency bands to get group velocity maps then used to obtain an S wave velocity model. Penetration depth of the model ranges between 12 and 25 km, depending on the velocity values and on the depth of the interfaces, here associated to strong velocity gradients. We found a low‐velocity anomaly in the region bounded by the two main faults that generated the 1980, M 6.9 Irpinia earthquake. A second anomaly was retrieved in the southeast part of the region and can be ascribed to a reminiscence of the Adria slab under the Apennine Chain.
    Description: Published
    Description: 4290 – 4305
    Description: 4T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: seismic ambient noise ; surface waves ; cross‐correlation analysis ; seismic tomography ; normal fault ; wave propagation ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-20
    Description: Earthquake ruptures often develop along faults separating materials with dissimilar elastic properties. Due to the broken symmetry, the propagation of the rupture along the bimaterial interface is driven by the coupling between interfacial sliding and normal traction pertur- bations. We numerically investigate in-plane rupture growth along a planar interface, under slip weakening friction, separating two dissimilar isotropic linearly elastic half-spaces, and we perform a parametric study of the classical Prakash–Clifton regularization, for different material contrasts. In particular the mesh-dependence and the regularization-dependence of the numerical solutions are analysed in this parameter space. When the regularization involves a slip-rate dependent relaxation time, a characteristic sliding distance is identified below which numerical solutions no longer depend on the regularization parameter, that is, they are phys- ically well-posed solutions. Such regularization provides an adaptive high-frequency filter of the slip-induced normal traction perturbations, following the dynamic shrinking of the dissi- pation zone during the acceleration phase. In contrast, a regularization involving a constant relaxation time leads to numerical solutions that always depend on the regularization parameter since it fails in adapting to the shrinking of the process zone. Dynamic regularization is further investigated using a non-local regularization based on a relaxation time that depends on the dynamic length of the dissipation zone. Such reformulation is shown to provide similar results as the dynamic timescale regularization proposed by Prakash–Clifton when the slip rate is replaced by the maximum slip rate along the sliding interface. This leads to the identification of a dissipative length scale associated with the coupling between interfacial sliding and nor- mal traction perturbations, together with a scaling law between the maximum slip rate and the dynamic size of the process zone during the rupture propagation. Dynamic timescale reg- ularization provides mesh-independent and physically well-posed numerical solutions during the acceleration phase towards an asymptotic speed. When generalized Rayleigh wave does not exist, numerical solutions are shown to tend towards an asymptotic velocity higher than the slowest shear wave speed. When the generalized Rayleigh wave speed exists, numerical solutions tend towards this velocity becoming noisier and noisier as the rupture progresses. In this regime regularization dependent, unstable finite-size pulses may be generated.
    Description: Published
    Description: 48–67
    Description: 2T. Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-06
    Description: Transnational access (TNA) allows cross-border, short-term and frequently free-of-charge access to world-class research facilities, to foster collaborations and exchanges of experience. Specifically, TNA aims to encourage open science and innovation and to increase the efficient and effective use of scientific infrastructure. Within EPOS, the European Plate Observing System, the Volcano Observatories and Multi-scale Laboratories communities have offered TNA to their high-quality research facilities through national and European funding. This experience has allowed the definition, design, and testing of procedures and activities needed to provide transnational access inn the EPOS context. In this paper, the EPOS community describes the main objectives for the provision of transnational access in the EPOS framework, based on previous experiences. It includes practical procedures for managing transnational access from a legal, governance, and financial perspective, and proposes logistical and technical solutions to effectively execute transnational access activities. In addition, it provides an outlook on the inclusion of new thematic communities within the TNA framework, and addresses the challenges of providing market-driven access to industry.
    Description: Published
    Description: DM214
    Description: 4IT. Banche dati
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-16
    Description: Tsunamis constitute a significant hazard for European coastal populations, and the impact of tsunami events worldwide can extend well beyond the coastal regions directly affected. Understanding the complex mechanisms of tsunami generation, propagation, and inundation, as well as managing the tsunami risk, requires multidisciplinary research and infrastructures that cross national boundaries. Recent decades have seen both great advances in tsunami science and consolidation of the European tsunami research community. A recurring theme has been the need for a sustainable platform for coordinated tsunami community activities and a hub for tsunami services. Following about three years of preparation, in July 2021, the European tsunami community attained the status of Candidate Thematic Core Service (cTCS) within the European Plate Observing System (EPOS) Research Infrastructure. Within a transition period of three years, the Tsunami candidate TCS is anticipated to develop into a fully operational EPOS TCS. We here outline the path taken to reach this point, and the envisaged form of the future EPOS TCS Tsunami. Our cTCS is planned to be organised within four thematic pillars: (1) Support to Tsunami Service Providers, (2) Tsunami Data, (3) Numerical Models, and (4) Hazard and Risk Products. We outline how identified needs in tsunami science and tsunami risk mitigation will be addressed within this structure and how participation within EPOS will become an integration point for community development.
    Description: Published
    Description: DM215
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-03
    Description: The Near Fault Observatories (NFOs) community is one of the European Plate Observing System (EPOS, http://www.epos-eu.org) Thematic Communities, today consisting of six research infrastructures that operate in regions characterised by high seismic hazard originating from different tectonic regimes. Earthquakes respond to complex natural systems whose mechanical properties evolve over time. Thus, in order to understand the multi-scale, physical/chemical processes responsible for the faulting that earthquakes occur on, it is required to consider phenomena that intersect different research fields, i.e., to put in place multidisciplinary monitoring. Hence, NFOs are grounded on modern and multidisciplinary infrastructures, collecting near fault high resolution raw data that allows generation of innovative scientific products. The NFOs usually complement regional backbone networks with a higher density distribution of seismic, geodetic, geochemical and other geophysical sensors, at surface and sometimes below grade. These dense and modern networks of multi-parametric sensors are sited at and around active faults, where moderate to large earthquakes have occurred in the past and are expected in the future. They continuously monitor the underlying Earth instability processes over a broad time interval. Data collected at each NFO results in an exceptionally high degree of knowledge of the geometry and parameters characterizing the local geological faults and their deformation pattern. The novel data produced by the NFO community is aggregated in EPOS and is made available to a diverse set of stakeholders through the NFO Federated Specific Data Gateway (FRIDGE). In the broader domain of the Solid Earth sciences, NFOs meet the growing expectations of the learning and communication sectors by hosting a large variety of scientific information about earthquakes as a natural phenomenon and a societal issue. It represents the EPOS concept and objective of aggregating and harmonising the European research infrastructures capabilities to facilitate broader scientific opportunity. The NFOs are at the cutting edge of network monitoring. They conduct multidisciplinary experiments for testing multi-sensor stations, as well as realise robust and ultra-low latency, transmission systems that can routinely accommodate temporary monitoring densification. The effort to continuously upgrade the technological efficiency of monitoring systems positions the NFO at the centre of marketing opportunities for the European enterprises devoted to new sensor technology. The NFOs constitute ideal test beds for generating expertise on data integration, creating tools for the next generation of multidisciplinary research, routine data analysis and data visualization. In particular focus is often on near-real time tools and triggering alarms at different levels are tested and implemented, strengthening the cooperation with the Agencies for risk management. NFOs have developed innovative operational actions such as the Testing Centre for Earthquake Early Warning and Source Characterisation (CREW) and detailed fast ground shaking and damage characterization. Complementing the recent growth of modern laboratory and computational models, the NFOs can provide interdisciplinary observations of comparable high resolution to describe the behaviour of fault slip over a vast range of spatial and temporal scales and aiding to provide more accurate earthquake hazard characterizations.
    Description: Published
    Description: DM316
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...