GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 125 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In previous studies, anomalies in arrival time and amplitudes of depth phases pP and sP recorded at teleseismic distances and produced by large intermediate-depth events of the Vrancea region were pointed out (Perrot et al. 1994). the modelling of major recent events has shown that the presence of a dipping interface and thick low-velocity sediment layer in the upper crust above the hypocentral area can explain such anomalies. Simulating broad-band records of the 1990 May 31 earthquake, it is shown that the 2-D crustal velocity model derived by Perrot et al. (1994) can also be used to explain observed waveforms in an extended azimuthal range from 105° to 243° and is valid for earthquakes having different hypocentral locations in the deep Vrancea seismic zone. Using records in the azimuthal range where a classical spherical model produces a good fit to the observed waveforms, the source is best modelled by two point sources at 90 and 93 km depth releasing the same amount of seismic moment, and separated by 1.5 s in time. Synthetics calculated for this source time history and the 2-D velocity model above the source give a much improved fit of the observed waveforms over what could be achieved with a 1-D spherical model. the results suggest that teleseismic waveforms could be reasonably well predicted for any event in the region with the 2-D velocity model, which accounts for the main structural features in the upper crust of the Vrancea region.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 99 (1989), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A Hamiltonian formalism is proposed for the calculation of rays in an anisotropic medium. This technique leads to a unified approach to calculate paraxial rays and rays perturbed by small changes of elastic parameters. We first study the perturbation of initial conditions (paraxial ray tracing). A set of rays propagating in the vicinity of a central ray is traced with the help of the so-called paraxial ray propagator. The interaction of these paraxial rays with an interface is simplified considerably in the Hamiltonian formulation. In the second part of the paper, the efficient determination of the rays and the propagator is discussed for a hexagonal anisotropic medium. We propose a finite element approach where the medium is divided into a set of elements with simple elastic parameter distributions. Analytical expressions of rays, paraxial rays and traveltimes are obtained for elliptical anisotropy. Expressions for general hexagonal anisotropy are obtained using ray perturbation theory. Examples of the calculation of rays and synthetic seismograms are presented.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 106 (1991), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We have developed a technique for the inversion of teleseismic S-waveforms in terms of azimuthal anisotropy in the upper mantle. We test different models of the Earth upper mantle by transforming the observed horizontal components into a synthetic vertical component and comparing this with the observed vertical component. The optimum model is found by minimizing the difference between the synthetic vertical component and the observed one. Using this method, we explore the possibility of constraining the distribution of azimuthal anisotropy with depth.We present examples of seismic observations where the data are clearly in favour of an anisotropic model. These observations can be interpreted in terms of two anisotropic layers with different directions of fast velocity axes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 84 (1994), S. 247-270 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-05
    Description: Secondary microseismic noise is generated by non-linear interactions between ocean waves at the ocean surface. We present here the theory for computing the site effect of the ocean layer upon body waves generated by noise sources distributed along the ocean surface. By defining the wavefield as the superposition of plane waves, we show that the ocean site effect can be described as the constructive interference of multiply reflected P waves in the ocean that are then converted to either P or SV waves at the ocean–crust interface. We observe that the site effect varies strongly with period and ocean depth, although in a different way for body waves than for Rayleigh waves. We also show that the ocean site effect is stronger for P waves than for S waves. We validate our computation by comparing the theoretical noise body wave sources with the sources inferred from beamforming analysis of the three seismogram components recorded by the Southern California Seismic Network. We use rotated traces for the beamforming analysis, and we show that we clearly detect P waves generated by ocean gravity wave interactions along the track of typhoon Ioke (2006 September). We do not detect the corresponding SV waves, and we demonstrate that this is because their amplitude is too weak.
    Description: Published
    Description: 1096-1106
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Body waves ; Site effects ; Theoretical Seismology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-16
    Description: Secondary microseismic noise is generated by non-linear interactions between ocean waves at the ocean surface. We present here the theory for computing the site effect of the ocean layer upon body waves generated by noise sources distributed along the ocean surface. By defining the wavefield as the superposition of plane waves, we show that the ocean site effect can be described as the constructive interference of multiply reflected P waves in the ocean that are then converted to either P or SV waves at the ocean–crust interface. We observe that the site effect varies strongly with period and ocean depth, although in a different way for body waves than for Rayleigh waves. We also show that the ocean site effect is stronger for P waves than for S waves. We validate our computation by comparing the theoretical noise body wave sources with the sources inferred from beamforming analysis of the three seismogram components recorded by the Southern California Seismic Network. We use rotated traces for the beamforming analysis, and we show that we clearly detect P waves generated by ocean gravity wave interactions along the track of typhoon Ioke (2006 September). We do not detect the corresponding SV waves, and we demonstrate that this is because their amplitude is too weak.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-06-21
    Description: The calculation of first-order P -wave ray synthetic seismograms based on first-order ray tracing (FORT) and dynamic ray tracing (FODRT) for P -waves propagating in inhomogeneous, weakly anisotropic media is extended from smooth to layered media. All the basic formulae necessary to calculate the P -wave FORT and FODRT quantities inside layers and to transform them at the points of reflection/transmission are given. The proposed formulae are applicable in subcritical as well as overcritical regions. The accuracy of the results is tested by comparing the approximate (FORT) results with the results obtained from a standard ray tracer for anisotropic media. The tests indicate that, except for critical regions, where the ray theory provides incorrect results anyway, the accuracy of FORT and FODRT in layered media is comparable with the accuracy in smooth media.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-24
    Description: Secondary microseism sources are pressure fluctuations close to the ocean surface. They generate acoustic P waves that propagate in water down to the ocean bottom where they are partly reflected and partly transmitted into the crust to continue their propagation through the Earth. We present the theory for computing the displacement power spectral density of secondary microseism P waves recorded by receivers in the far field. In the frequency domain, the P -wave displacement can be modeled as the product of (1) the pressure source, (2) the source site effect that accounts for the constructive interference of multiply reflected P waves in the ocean, (3) the propagation from the ocean bottom to the stations and (4) the receiver site effect. Secondary microseism P waves have weak amplitudes, but they can be investigated by beamforming analysis. We validate our approach by analysing the seismic signals generated by typhoon Ioke (2006) and recorded by the Southern California Seismic Network. Backprojecting the beam onto the ocean surface enables to follow the source motion. The observed beam centroid is in the vicinity of the pressure source derived from the ocean wave model WAVEWATCH III R . The pressure source is then used for modeling the beam and a good agreement is obtained between measured and modeled beam amplitude variation over time. This modeling approach can be used to invert P -wave noise data and retrieve the source intensity and lateral extent.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: S and P receiver functions reveal indications of a low S velocity layer at 350–410 km depths beneath the Arabian plate. A similar layer was previously found beneath the Kaapvaal craton in southern Africa and Tunguska basin of the Siberian platform. We hypothesize, that the boundary at 350 km depth may separate dry mantle root of the Arabian plate from the underlying wet mantle layer. This boundary is not found beneath the Gulf of Aden, where the root is destroyed by sea-floor spreading.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: The development of temporary and permanent broad-band seismic arrays reinforces the need for advanced interpretation techniques in surface-wave analysis. We present a new method based on 2-D paraxial ray theory of inverting teleseismic surface-wave phase information and constructing phase velocity maps on a regional scale. Measurements of local phase velocities and propagation directions of Rayleigh waves taken from full waveform synthetic seismograms are used to validate the ray theory for smooth structures on a regional scale. Curved wavefronts created by heterogeneous structure outside the study area are taken into account through joint inversion for the phase velocity field and the shape of the incoming wavefronts. In the forward ray tracing procedure, the curved wavefronts are introduced through the boundary conditions by equating the slowness vector of the ray at the edge of the study region with the known gradient of the arrival time of the wave. To make the inverse problem non-singular we constrain the parameters in the inversion primarily by applying a smoothness criteria on the velocity field and on the incoming wave-field. Inversions of synthetic data sets computed by direct ray tracing and by full waveform modelling show that for 100 km spacing between stations the minimum size of structure that we can image is approximately 150 km. Heterogeneities with a size approximately equal to the wavelength are reconstructed by the ray-based inversion even though velocity variations are underestimated due to the wave-field smoothing of the structures. A minimum signal-to-noise ratio of 3.5 is necessary in order to correctly retrieve the phase velocity field. Inversion of a subset of the SVEKALAPKO data for 60 s period demonstrates the applicability of the method on real data.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...