GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Biodiversity -- Europe, Central. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (471 pages)
    Edition: 1st ed.
    ISBN: 9783642296925
    DDC: 577
    Language: German
    Note: Intro -- Die Reise ins Anthropozän - und ihre Folgen -- Klimawandel und Biodiversitätsschutz - die Herausforderung des 21. Jahrhunderts -- Vorsorgen ist besser als Heilen - die Zeit drängt! -- INHALTSVERZEICHNIS -- VERZEICHNIS DER TEXTBOXEN -- 1 Klimatologische Grundlagen Klimawandel, Beobachtungen, Szenarien -- 1 Klimatologische Grundlagen -- 1.1 KLIMA - WAS IST DAS? -- 1.1.1 Steuernde Mechanismen -- 1.1.2 Extremereignisse -- 1.1.3 Das Klima ändert sich - ändert sich das Klima? -- 1.2 DER BEOBACHTETE KLIMAWANDEL -- 1.2.1 Die Welt im Klimawandel -- 1.2.2 Mitteleuropa im Klimawandel -- 1.2.3 Lehren aus historischen Klimawandelphasen -- 1.2.4 Das Klima der Nacheiszeit: Biodiversität und menschliche Gesellschaft -- 1.3 DIE ZUKUNFT DES KLIMAS -- 1.3.1 Grundlagen zu Szenarien und Modellen -- 1.3.2 Von global zu lokal -- 1.3.3 Der Umgang mit Unsicherheiten -- 1.3.4 Klimaszenarien für Mitteleuropa -- 2 Klima als Umwelt- und Überlebensfaktor -- 2 Klima als Umwelt- und Überlebensfaktor -- 2.1 BEDEUTUNG VON KLIMAFAKTOREN FÜR DAS ÜBERLEBEN UND DIE VERBREITUNG VON ORGANISMEN -- 2.1.1 Bedeutung von Klimafaktoren für das Überleben von Organismen -- 2.1.2 Bedeutung von Klimafaktoren für die Verbreitung von Organismen -- 2.1.3 Auswirkungen eines steigenden CO²-Gehalts der Atmosphäre auf Pflanzen und Tiere -- 2.1.4 Indirekte Effekte des Klimawandels auf Organismen -- 2.2 ÖKOLOGISCHE AUSWIRKUNGEN KLIMATISCHER EXTREMEREIGNISSE -- 2.2.1 „Extreme" Unterschiede -- 2.2.2 Überraschende Reaktionen und abrupte Änderungen -- 3 Klimawandeleffekte heute: Welche Änderungen finden bereits statt? -- 3 Klimawandeleffekte heute: -- 3.1 PHÄNOLOGIE -- 3.1.1 Phänologische Änderungen bei Pflanzen -- 3.1.2 Phänologische Änderungen bei Tieren -- 3.2 AREALÄNDERUNGEN -- 3.2.1 Was sind Areale, wodurch werden sie bestimmt? -- 3.2.2 Arealerweiterungen -- 3.2.3 Arealverluste. , 3.2.4 Höhenverbreitung -- 3.3 BIOLOGISCHE INVASIONEN UND KLIMAWANDEL -- 3.3.1 Einleitung -- 3.3.2 Auswirkungen -- 3.4 ERSTE ÄNDERUNGEN IN ÖKOLOGISCHEN BEZIEHUNGEN -- 3.4.1 Konkurrenz -- 3.4.2 Herbivorie -- 3.4.3 Bestäubung -- 3.4.4 Prädation -- 3.4.5 Parasitismus -- 3.4.6 Multiple ökologische Beziehungen -- 4 Klimawandeleffekte morgen: Was könnte noch kommen? -- 4 Klimawandeleffekte morgen: -- 4.1. AREALÄNDERUNGEN IN DER ZUKUNFT -- 4.1.1 Grundlagen klimagesteuerter Arealänderungen -- 4.1.2 Wie lassen sich Arealentwicklungen vorhersagen? -- 4.1.3 Woher kommen einwandernde Arten, wohin gehen die derzeitigen? -- 4.1.4 Welche Arten reagieren wie auf den Klimawandel -- 4.1.5 Übersicht über ausgewählte taxonomische Gruppen -- 4.1.6 Schlussfolgerungen -- 4.2 MOBILITÄT UND AUSBREITUNGSDYNAMIK: -- 4.2.1 Grundlagen zu Klimawandel und Ausbreitungsdynamik -- 4.2.2 Individuelle Mobilität und Ausbreitungsfähigkeit -- 4.2.3 Die Rolle randlicher Populationen bei der Ausbreitung -- 4.2.4 Mechanismen der Arealerweiterung -- 4.2.5 Ausbreitungspotenzial und erforderliche Wanderungsraten vor dem Hintergrund des Klimawandels -- 4.2.6 Durchlässigkeit von Landschaften und Klimawandel -- 4.2.7 Ausblick -- 4.3 ZUKÜNFTIGE ÄNDERUNGEN ÖKOLOGISCHER BEZIEHUNGEN -- 4.3.1 Zukünftige Änderungen in paarweisen Beziehungen -- 4.3.2 Zukünftige Änderungen in Beziehungsnetzen -- 4.3.3 Netzwerkarchitektur als möglicher Puffer -- 4.3.4 Neue Lebensgemeinschaften als mögliche Puffer -- 4.4 SCHWELLENWERTE UND KIPPPUNKTE VON ÖKOSYSTEMEN -- 4.4.1 Was sind Schwellenwerte von Lebensgemeinschaften? -- 4.4.2 Mechanismen und Empfindlichkeit -- 4.4.3 Ausblick -- 4.5 NEUARTIGE ÖKOSYSTEME -- 4.5.1 Entstehung neuartiger Ökosysteme -- 4.5.2 Steuernde Prozesse, Selbstverstärkung und Schwellenwerte -- 4.5.3 Eigenschaften neuartiger Ökosysteme. , 4.5.4 Wichtige neuartiger Ökosysteme - wie könnten sie aussehen? -- 4.5.5 Neuartige Ökosysteme als Herausforderung für den Naturschutz -- 4.6 GENETISCHE VIELFALT UND KLIMAWANDEL -- 4.6.1 Migration, Arealverschiebung und lokales Aussterben -- 4.6.2 Anpassung durch phänotypische Plastizität -- 4.6.3 Anpassung durch Evolution -- 4.6.4 Ausblick -- 4.7 INDIREKTE AUSWIRKUNGEN DES KLIMAWANDELS AUF DIE BIODIVERSITÄT -- 4.7.1 Klimawandel und die Bedeutung indirekter Effekte -- 4.7.2 Wie wirken Klimaschutz und Klimawandelanpassung auf die Bio diversität? -- 4.7.3 Vermeidung von Konflikten -- 4.8 EINFLUSS DES KLIMAWANDELS AUF NÄHRSTOFFKREISLÄUFE IN BÖDEN UND GEWÄSSERN -- 4.8.1 Einleitung -- 4.8.2 Effekte höherer CO2-Konzentrationen -- 4.8.3 Effekte steigender Temperaturen -- 4.8.4 Klimatische Extremereignisse -- 4.9 ÄNDERUNGEN IM GLOBALEN KLIMASYSTEM MIT AUSWIRKUNGEN AUF MITTELEUROPA -- 4.9.1 Einleitung -- 4.9.2 Meeresspiegel, Meereis und Meeresströmungen -- 4.9.3 Ozonloch -- 4.9.4 Wandernde Arten -- 4.10 KLIMAWANDEL, GLOBALISIERUNG UND INFEKTIONS KRANKHEITEN DES MENSCHEN -- 4.10.1 Einleitung -- 4.10.2 Grundlagen und Überblick -- 4.10.3 Ausblick -- 5 Wie könnten unsere Lebensräume und Landschaften zukünftig aussehen? Eine Gesamtschau -- 5 Wie könnten unsere Lebensräume und Landschaften zukünftig aussehen? -- 5.1 GEWÄSSER: STEIGENDE TEMPERATUR UND GEÄNDERTES ABFLUSSVERHALTEN -- 5.1.1 Klimawandel unter Wasser -- 5.1.2 Geänderte abiotische Bedingungen -- 5.1.3 Ökologie -- 5.1.4 Gewässerlebensräume der Zukunft -- 5.2 MOORE UND FEUCHTGEBIETE - DIE GEFAHR DER AUSTROCKNUNG -- 5.2.1 Feuchtlebensräume in Mitteleuropa -- 5.2.2 Ungebremster Verlust? -- 5.2.3 Feuchtlebensräume ohne (Klima-)Zukunft? -- 5.2.4 Welche Chancen haben Feuchtgebietsspezialisten im Klimawandel? -- 5.3 WÄLDER: Anbaugrenzen, Klimaextreme, Parasiten und Störungen -- 5.3.1 Wald heute. , 5.3.2 Die neuen Grenzen des Waldes -- 5.3.3 Baumartenzusammensetzung und Mortalität -- 5.3.4 Stürme, Waldbrände -- 5.3.5 Biozönosenwandel -- 5.3.6 Waldbewirtschaftung in einem sich wandelnden Klima -- 5.4 DIE ALPEN IM KLIMAWANDEL -- 5.4.1 Besonderheiten der Klimawandelfolgen im Gebirge -- 5.4.2 Reaktionsmuster von Gebirgsarten -- 5.4.3 Waldgrenze -- 5.4.4 Veränderungen in den Hochlagen -- 5.4.5 Wechselwirkungen mit Landnutzungswandel und weiteren Komponenten des globalen Wandels -- 5.4.6 Ausblick -- 5.5 LANDWIRTSCHAFT, BIODIVERSITÄT UND KLIMAWANDEL: Änderungen von Anbaugrenzen und Nutzungsintensität -- 5.5.1 Landwirtschaftliche Nutzung und ihre Klimaabhängigkeit -- 5.5.2 Auswirkungen des Klimawandels -- 5.5.3 Gewinner und Verlierer - Verschiebung von Anbaugrenzen und Nutzungsformen -- 5.5.4 Anpassung der landwirtschaftlichen Nutzung: Auswirkungen auf Biodiversität und Landschaft -- 5.6 GRÜNLAND - IM SPANNUNGSFELD VON KLIMA- UND NUTZUNGS-WANDEL -- 5.6.1 Wiesen und Weiden heute -- 5.6.2 Trockenrasen, Mager- und Feuchtwiesen -- 5.6.3 Intensivgrünland -- 5.6.4 Klimawandel und Landnutzung -- 5.7 MEERE UND KÜSTEN: KLIMAWANDEL UND BIODIVERSITÄT -- 5.7.1 Einleitung -- 5.7.2 Temperaturanstieg und Meeresgebiete -- 5.7.3 Folgen des Anstiegs der Meerestemperatur auf die Biodiversität -- 5.7.4 Meeresspiegelanstieg -- 5.7.5 Versauerung der Meere -- 5.8 LANDSCHAFT IM KLIMAWANDEL -- 5.8.1 Was ist Landschaft? -- 5.8.2 Wie beeinflusst der Klimawandel Landschaften? -- 5.8.3 Szenarien zur Zukunft mitteleuropäischer Landschaften -- 5.8.4 Am Weg zu Energielandschaften? -- 5.8.5 Multifunktionale Landschaften im Klimawandel? -- 5.8.6 Schlussfolgerungen -- 6 Was leistet die Biodiversität für die Anpassung der vom Klimawandel betroffenen menschlichen Gesellschaft? -- 6 Was leistet die Biodiversität für die Anpassung der vom Klimawandel betroffenen menschlichen Gesellschaft?. , 6.1 KLIMAWANDEL, BIODIVERSITÄT UND ÖKOSYSTEMLEISTUNGEN -- 6.1.1 Was sind Ökosystemleistungen? -- 6.1.2 Diversität und Stabilität als Grundlagen für Ökosystemleistungen -- 6.1.3 Bewertung und Monetarisierung von Ökosystemleistungen -- 6.1.4 Wie beeinflusst der Klimawandel Ökosystemleistungen? -- 6.1.5 Ein Beispiel von vielen: Ökonomische Bedeutung der Bestäubungs-leistung von Insekten und der Einfluss des Klimawandels -- 6.2 KLIMAWANDEL UND LANDNUTZUNG - WELCHE ROLLE SPIELT DER NATURSCHUTZ BEI DER ANPASSUNG? -- 6.2.1 Landwirtschaft, Klimawandel und Biodiversität -- 6.2.2 Bedeutung der Biodiversität für die Landnutzung - und umgekehrt -- 6.2.3 Nachhaltige Landnutzung und Biodiversität - Synergien mit Kli-maschutz und in der Klimawandelanpassung -- 6.2.4 Kooperation statt Konfrontation -- 6.3 NATÜRLICHER SCHUTZ VOR NATURGEFAHREN -- 6.3.1 Einleitung -- 6.3.2 Hochwässer -- 6.3.3 Küstenschutz -- 6.3.4 Lawinen, Muren, Steinschlag, Rutschungen -- 6.3.5 Ausblick -- 6.4 KLIMAWANDEL UND STÄDTE: NATURSCHUTZ UND LEBENSQUALITÄT -- 6.4.1 Einleitung -- 6.4.2 Biologische Vielfalt in Städten -- 6.4.3 Stadtklima und Folgen des Klimawandels für Städte -- 6.4.4 Welchen Beitrag können städtische Freiräume zur Anpassung an den Klimawandel leisten? -- 6.4.5 Synergien zwischen freiraumplanerischen Anpassungsmaßnahmen und Naturschutz in Städten -- 7 Naturschutz als Beitrag zum Klimaschutz -- 7 Naturschutz als Beitrag zum Klimaschutz -- 7.1 VEGETATION UND BODEN ALS KOHLENSTOFFSENKEN UND -SPEICHER -- 7.1.1 Globale Kohlenstoffspeicherung in der Biosphäre -- 7.1.2 Vom Wert des Kohlenstoffs - eine finanzielle Bewertung der Koh-lenstoffspeicherung -- 7.1.3 Kohlenstoffspeicherung und Landnutzung in Lebensräumen Mitteleuropas -- 7.1.4 Einfluss des Klimawandels auf zukünftige Kohlenstoffspeicherung -- 7.2 REDD+ - EINE CHANCE FÜR DEN INTERNATIONALEN WALDNATUR-SCHUTZ?. , 7.2.1 Idee und Definition.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Article impact statement : In an era of profound biodiversity crisis, invasion costs, invader impacts, and human agency should not be dismissed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights: • Aquatic invasions have cost the global economy US$345 billion. • Most costs are caused by invertebrates, in North America and damages to resources. • Costs have increased exponentially over time, to at least US$23 billion in 2020. • Aquatic invasion costs are underrepresented compared to terrestrial invasion costs. • Taxonomic, geographic and temporal gaps make these costs severely underestimated. Abstract: Much research effort has been invested in understanding ecological impacts of invasive alien species (IAS) across ecosystems and taxonomic groups, but empirical studies about economic effects lack synthesis. Using a comprehensive global database, we determine patterns and trends in economic costs of aquatic IAS by examining: (i) the distribution of these costs across taxa, geographic regions and cost types; (ii) the temporal dynamics of global costs; and (iii) knowledge gaps, especially compared to terrestrial IAS. Based on the costs recorded from the existing literature, the global cost of aquatic IAS conservatively summed to US$345 billion, with the majority attributed to invertebrates (62%), followed by vertebrates (28%), then plants (6%). The largest costs were reported in North America (48%) and Asia (13%), and were principally a result of resource damages (74%); only 6% of recorded costs were from management. The magnitude and number of reported costs were highest in the United States of America and for semi-aquatic taxa. Many countries and known aquatic alien species had no reported costs, especially in Africa and Asia. Accordingly, a network analysis revealed limited connectivity among countries, indicating disparate cost reporting. Aquatic IAS costs have increased in recent decades by several orders of magnitude, reaching at least US$23 billion in 2020. Costs are likely considerably underrepresented compared to terrestrial IAS; only 5% of reported costs were from aquatic species, despite 26% of known invaders being aquatic. Additionally, only 1% of aquatic invasion costs were from marine species. Costs of aquatic IAS are thus substantial, but likely underreported. Costs have increased over time and are expected to continue rising with future invasions. We urge increased and improved cost reporting by managers, practitioners and researchers to reduce knowledge gaps. Few costs are proactive investments; increased management spending is urgently needed to prevent and limit current and future aquatic IAS damages.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Biological invasions continue to threaten the stability of ecosystems and societies that are dependent on their services. Whilst the ecological impacts of invasive alien species (IAS) have been widely reported in recent decades, there remains a paucity of information concerning their economic impacts. Europe has strong trade and transport links with the rest of the world, facilitating hundreds of IAS incursions, and largely centralised decision-making frameworks. The present study is the first comprehensive and detailed effort that quantifies the costs of IAS collectively across European countries and examines temporal trends in these data. In addition, the distributions of costs across countries, socioeconomic sectors and taxonomic groups are examined, as are socio-economic correlates of management and damage costs. Total costs of IAS in Europe summed to US$140.20 billion (or €116.61 billion) between 1960 and 2020, with the majority (60%) being damage-related and impacting multiple sectors. Costs were also geographically widespread but dominated by impacts in large western and central European countries, i.e. the UK, Spain, France, and Germany. Human population size, land area, GDP, and tourism were significant predictors of invasion costs, with management costs additionally predicted by numbers of introduced species, research effort and trade. Temporally, invasion costs have increased exponentially through time, with up to US$23.58 billion (€19.64 billion) in 2013, and US$139.56 billion (€116.24 billion) in impacts extrapolated in 2020. Importantly, although these costs are substantial, there remain knowledge gaps on several geographic and taxonomic scales, indicating that these costs are severely underestimated. We, thus, urge increased and improved cost reporting for economic impacts of IAS and coordinated international action to prevent further spread and mitigate impacts of IAS populations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Highlights: • Since 1960, management for biological invasions totalled at least $95.3 billion. • Damage costs from invasions were substantially higher ($1130.6 billion). • Pre-invasion management spending is 25-times lower than post-invasion. • Management and damage costs are increasing rapidly over time. • Proactive management substantially reduces future costs at the trillion-$ scale. Abstract: The global increase in biological invasions is placing growing pressure on the management of ecological and economic systems. However, the effectiveness of current management expenditure is difficult to assess due to a lack of standardised measurement across spatial, taxonomic and temporal scales. Furthermore, there is no quantification of the spending difference between pre-invasion (e.g. prevention) and post-invasion (e.g. control) stages, although preventative measures are considered to be the most cost-effective. Here, we use a comprehensive database of invasive alien species economic costs (InvaCost) to synthesise and model the global management costs of biological invasions, in order to provide a better understanding of the stage at which these expenditures occur. Since 1960, reported management expenditures have totalled at least US$95.3 billion (in 2017 values), considering only highly reliable and actually observed costs — 12-times less than damage costs from invasions ($1130.6 billion). Pre-invasion management spending ($2.8 billion) was over 25-times lower than post-invasion expenditure ($72.7 billion). Management costs were heavily geographically skewed towards North America (54%) and Oceania (30%). The largest shares of expenditures were directed towards invasive alien invertebrates in terrestrial environments. Spending on invasive alien species management has grown by two orders of magnitude since 1960, reaching an estimated $4.2 billion per year globally (in 2017 values) in the 2010s, but remains 1–2 orders of magnitude lower than damages. National management spending increased with incurred damage costs, with management actions delayed on average by 11 years globally following damage reporting. These management delays on the global level have caused an additional invasion cost of approximately $1.2 trillion, compared to scenarios with immediate management. Our results indicate insufficient management — particularly pre-invasion — and urge better investment to prevent future invasions and to control established alien species. Recommendations to improve reported management cost comprehensiveness, resolution and terminology are also made.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-05-14
    Description: The future distribution of river fishes will be jointly affected by climate and land use changes forcing species to move in space. However, little is known if fish species will be able to keep pace with predicted climate and land use-driven habitat shifts, in particular in fragmented river networks. In this study, we coupled species distribution models (step-wise boosted regression trees) of 17 fish species with species-specific models of their dispersal (fish dispersal model FIDIMO) in the European River Elbe catchment. We quantified (i) the extent and direction (up- vs. downstream) of predicted habitat shifts under coupled ‘moderate’ and ‘severe’ climate and land use change scenarios for 2050, and (ii) the dispersal abilities of fishes to track predicted habitat shifts while explicitly considering movement barriers (e.g. weirs, dams). Our results revealed median net losses of suitable habitats of 24 and 94 river kilometers per species for the moderate and severe future scenarios, respectively. Predicted habitat gains and losses and the direction of habitat shifts were highly variable among species. Habitat gains were negatively related with fish body size, i.e. suitable habitats were projected to expand for smaller-bodied fishes and to contract for larger-bodied fishes. Moreover, habitats of lowland fish species were predicted to shift downstream, whereas those of headwater species showed upstream shifts. The dispersal model indicated that suitable habitats are likely to shift faster than species might disperse. In particular smaller-bodied fish (〈200 mm) seem most vulnerable and least able to track future environmental change as their habitat shifted most and they are typically weaker dispersers. Furthermore, fishes and particularly larger-bodied species might substantially be restricted by movement barriers to respond to predicted climate and land use changes, while smaller-bodied species are rather restricted by their specific dispersal ability. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Haubrock, P. J., Turbelin, A. J., Cuthbert, R. N., Novoa, A., Taylor, N. G., Angulo, E., Ballesteros-Mejia, L., Bodey, T. W., Capinha, C., Diagne, C., Essl, F., Golivets, M., Kirichenko, N., Kourantidou, M., Leroy, B., Renault, D., Verbrugge, L., & Courchamp, F. Economic costs of invasive alien species across Europe. Neobiota, 67, (2021): 153–190, https://doi.org/10.3897/neobiota.67.58196.
    Description: Biological invasions continue to threaten the stability of ecosystems and societies that are dependent on their services. Whilst the ecological impacts of invasive alien species (IAS) have been widely reported in recent decades, there remains a paucity of information concerning their economic impacts. Europe has strong trade and transport links with the rest of the world, facilitating hundreds of IAS incursions, and largely centralised decision-making frameworks. The present study is the first comprehensive and detailed effort that quantifies the costs of IAS collectively across European countries and examines temporal trends in these data. In addition, the distributions of costs across countries, socioeconomic sectors and taxonomic groups are examined, as are socio-economic correlates of management and damage costs. Total costs of IAS in Europe summed to US$140.20 billion (or €116.61 billion) between 1960 and 2020, with the majority (60%) being damage-related and impacting multiple sectors. Costs were also geographically widespread but dominated by impacts in large western and central European countries, i.e. the UK, Spain, France, and Germany. Human population size, land area, GDP, and tourism were significant predictors of invasion costs, with management costs additionally predicted by numbers of introduced species, research effort and trade. Temporally, invasion costs have increased exponentially through time, with up to US$23.58 billion (€19.64 billion) in 2013, and US$139.56 billion (€116.24 billion) in impacts extrapolated in 2020. Importantly, although these costs are substantial, there remain knowledge gaps on several geographic and taxonomic scales, indicating that these costs are severely underestimated. We, thus, urge increased and improved cost reporting for economic impacts of IAS and coordinated international action to prevent further spread and mitigate impacts of IAS populations.
    Description: he authors acknowledge the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project that allowed the construction of the InvaCost database. The present work was conducted following a workshop funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenario project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. AN acknowledges funding from EXPRO grant no. 19-28807X (Czech Science Foundation) and long-term research development project RVO 67985939 (The Czech Academy of Sciences). CC was supported by Portuguese National Funds through Fundação para a Ciência e a Tecnologia (CEECIND/02037/2017; UIDB/00295/2020 and UIDP/00295/2020). RNC was funded by a research fellowship from the Alexander von Humboldt Foundation. TWB acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant no. 747120. MG and CD were funded by the BiodivERsA-Belmont Forum Project “Alien Scenarios” (BMBF/PT DLR 01LC1807C). NK was partially supported by the Russian Foundation for Basic Research (grant no.19-04-01029-A) [national literature survey] and the basic project of Sukachev Institute of Forest SB RAS (project no. 0287-2021-0011) [InvaCost database contribution]. DR thanks InEE-CNRS who supports the network GdR 3647 ‘Invasions Biologiques’. Funds for AJT, EA and LBM contracts come from the AXA Research Fund Chair of Invasion Biology of University Paris Saclay. BL, DR and FC are French agents (affiliated, respectively, to the Muséum National d’Histoire Naturelle, University of Rennes and Centre National de la Recherche Scientifique); their salaries, for which they are grateful, are typically not accounted for in assessment of costs on biological invasions.
    Keywords: Bodiversity ; European Union ; InvaCost ; monetary impacts ; non-native biota ; socio-economic correlates ; socioeconomic sectors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cuthbert, R. N., Pattison, Z., Taylor, N. G., Verbrugge, L., Diagne, C., Ahmed, D. A., Leroy, B., Angulo, E., Briski, E., Capinha, C., Catford, J. A., Dalu, T., Essl, F., Gozlan, R. E., Haubrock, P. J., Kourantidou, M., Kramer, A. M., Renault, D., Wasserman, R. J., & Courchamp, F. Global economic costs of aquatic invasive alien species. Science of the Total Environment, 775, (2021): 145238, https://doi.org/10.1016/j.scitotenv.2021.145238.
    Description: Much research effort has been invested in understanding ecological impacts of invasive alien species (IAS) across ecosystems and taxonomic groups, but empirical studies about economic effects lack synthesis. Using a comprehensive global database, we determine patterns and trends in economic costs of aquatic IAS by examining: (i) the distribution of these costs across taxa, geographic regions and cost types; (ii) the temporal dynamics of global costs; and (iii) knowledge gaps, especially compared to terrestrial IAS. Based on the costs recorded from the existing literature, the global cost of aquatic IAS conservatively summed to US$345 billion, with the majority attributed to invertebrates (62%), followed by vertebrates (28%), then plants (6%). The largest costs were reported in North America (48%) and Asia (13%), and were principally a result of resource damages (74%); only 6% of recorded costs were from management. The magnitude and number of reported costs were highest in the United States of America and for semi-aquatic taxa. Many countries and known aquatic alien species had no reported costs, especially in Africa and Asia. Accordingly, a network analysis revealed limited connectivity among countries, indicating disparate cost reporting. Aquatic IAS costs have increased in recent decades by several orders of magnitude, reaching at least US$23 billion in 2020. Costs are likely considerably underrepresented compared to terrestrial IAS; only 5% of reported costs were from aquatic species, despite 26% of known invaders being aquatic. Additionally, only 1% of aquatic invasion costs were from marine species. Costs of aquatic IAS are thus substantial, but likely underreported. Costs have increased over time and are expected to continue rising with future invasions. We urge increased and improved cost reporting by managers, practitioners and researchers to reduce knowledge gaps. Few costs are proactive investments; increased management spending is urgently needed to prevent and limit current and future aquatic IAS damages.
    Description: The authors acknowledge the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project that allowed the construction of the InvaCost database. The present work was conducted following a workshop funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenarios project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. RNC is funded through a Humboldt Research Fellowship from the Alexander von Humboldt Foundation. DAA is funded by the Kuwait Foundation for the Advancement of Sciences (KFAS) (PR1914SM-01) and the Gulf University for Science and Technology (GUST) internal seed fund (187092). CD was funded by the BiodivERsA-Belmont Forum Project AlienScenarios (BMBF/PT DLR 01LC1807C). EA was funded by the AXA Research Fund Chair of Invasion Biology of University Paris Saclay. CC was supported by Portuguese National Funds through Fundação para a Ciência e a Tecnologia (CEECIND/02037/2017; UIDB/00295/2020 and UIDP/00295/2020). TD acknowledges funding from National Research Foundation (NRF_ZA) (Grant Number: 117700). FE appreciates funding by the Austrian Science Foundation (FWF project no I 4011-B32). AMK was supported by the NSF Macrosystems Biology program under grant 1834548. DR thanks InEE-CNRS who supports the French national network Biological Invasions (Groupement de Recherche InvaBio, 2014–2022).
    Keywords: Brackish ; Freshwater ; Habitat biases ; InvaCost ; Marine ; Monetary impact
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cuthbert, R. N., Diagne, C., Hudgins, E. J., Turbelin, A., Ahmed, D. A., Albert, C., Bodey, T. W., Briski, E., Essl, F., Haubrock, P. J., Gozlan, R. E., Kirichenko, N., Kourantidou, M., Kramer, A. M., & Courchamp, F. Biological invasion costs reveal insufficient proactive management worldwide. Science of the Total Environment, 819, (2022): 153404, https://doi.org/10.1016/j.scitotenv.2022.153404.
    Description: The global increase in biological invasions is placing growing pressure on the management of ecological and economic systems. However, the effectiveness of current management expenditure is difficult to assess due to a lack of standardised measurement across spatial, taxonomic and temporal scales. Furthermore, there is no quantification of the spending difference between pre-invasion (e.g. prevention) and post-invasion (e.g. control) stages, although preventative measures are considered to be the most cost-effective. Here, we use a comprehensive database of invasive alien species economic costs (InvaCost) to synthesise and model the global management costs of biological invasions, in order to provide a better understanding of the stage at which these expenditures occur. Since 1960, reported management expenditures have totalled at least US$95.3 billion (in 2017 values), considering only highly reliable and actually observed costs — 12-times less than damage costs from invasions ($1130.6 billion). Pre-invasion management spending ($2.8 billion) was over 25-times lower than post-invasion expenditure ($72.7 billion). Management costs were heavily geographically skewed towards North America (54%) and Oceania (30%). The largest shares of expenditures were directed towards invasive alien invertebrates in terrestrial environments. Spending on invasive alien species management has grown by two orders of magnitude since 1960, reaching an estimated $4.2 billion per year globally (in 2017 values) in the 2010s, but remains 1–2 orders of magnitude lower than damages. National management spending increased with incurred damage costs, with management actions delayed on average by 11 years globally following damage reporting. These management delays on the global level have caused an additional invasion cost of approximately $1.2 trillion, compared to scenarios with immediate management. Our results indicate insufficient management — particularly pre-invasion — and urge better investment to prevent future invasions and to control established alien species. Recommendations to improve reported management cost comprehensiveness, resolution and terminology are also made.
    Description: The authors thank the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project and the work on InvaCost database development. The present work was conducted in the frame of InvaCost workshop carried in November 2019 (Paris, France) and funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenario project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. RNC was funded through a Leverhulme Early Career Fellowship (ECF-2021-001) from the Leverhulme Trust and a Humboldt Postdoctoral Fellowship from the Alexander von Humboldt Foundation. DAA is funded by the Kuwait Foundation for the Advancement of Sciences (KFAS) (PR1914SM-01) and the Gulf University for Science and Technology (GUST) internal seed funds (187092 & 234597). CA was funded by the French National Centre for Scientific Research (CNRS). TWB acknowledges funding from the European Union's Horizon 2020 research and innovation programme Marie Skłodowska-Curie fellowship (Grant No. 747120). FE was funded through the 2017–2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, and with the funding organisation Austrian Science Foundation FWF (grant I 4011-B32). NK is funded by the basic project of Sukachev Institute of Forest SB RAS, Russia (Project No. 0287-2021-0011; data mining) and the Russian Science Foundation (project No. 21-16-00050; data analysis).
    Keywords: Biosecurity ; Delayed control and eradication ; Global trends ; InvaCost ; Invasive alien species ; Socio-economic impacts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-22
    Description: Darwin’s naturalization conundrum describes two seemingly contradictory hypotheses regarding whether alien species closely or distantly related to native species should be more likely to naturalize in regional floras. Both expectations have accumulated empirical support, and whether such apparent inconsistency can be reconciled at the global scale is unclear. Here, using 219,520 native and 9,531 naturalized alien plant species across 487 globally distributed regions, we found a latitudinal gradient in Darwin’s naturalization conundrum. Naturalized alien plant species are more closely related to native species at higher latitudes than they are at lower latitudes, indicating a greater influence of preadaptation in harsher climates. Human landscape modification resulted in even steeper latitudinal clines by selecting aliens distantly related to natives in warmer and drier regions. Our results demonstrate that joint consideration of climatic and anthropogenic conditions is critical to reconciling Darwin’s naturalization conundrum.
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...