GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    E-Resource
    E-Resource
    Washington, DC : ODP, Ocean Drilling Program
    Type of Medium: Electronic Resource
    Pages: 1 CD-ROM , 1 booklet (XV, 39, 16 S.) , 12 cm
    Series Statement: Proceedings of the ocean drilling program 197.2001
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Konferenzschrift ; Forschungsbericht ; Konferenzschrift 1991 ; Indischer Ozean ; Ozeanische Erdkruste ; Gesteinskunde ; Stratigraphie ; Tiefseesediment ; Indischer Ozean ; Meeressediment ; Meeresgeologie ; Meeresboden ; Biostratigraphie ; Indischer Ozean ; Ocean Drilling Program ; Deep Sea Drilling Project ; Indischer Ozean ; Bohrung ; Paläoozeanographie ; Tiefseebohrung ; Paläoozeanographie ; Indischer Ozean ; Indischer Ozean ; Ozeanische Erdkruste ; Gesteinskunde ; Stratigraphie ; Tiefseesediment ; Indischer Ozean ; Meeressediment ; Meeresgeologie ; Meeresboden ; Biostratigraphie ; Indischer Ozean ; Ocean Drilling Program ; Deep Sea Drilling Project ; Indischer Ozean ; Bohrung ; Paläoozeanographie ; Tiefseebohrung
    Type of Medium: Book
    Pages: XVI, 475 S , Ill., graph. Darst
    ISBN: 0875908225
    Series Statement: Geophysical monograph 70
    DDC: 551.46/08/095
    Language: English
    Note: Literaturangaben
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Falloon, T., Hoernle, K., Schaefer, B., Bindeman, I., Hart, S., Garbe-Schonberg, D., & Duncan, R. Petrogenesis of lava from Christmas Island, Northeast Indian Ocean: implications for the nature of recycled components in non-plume intraplate settings. Geosciences, 12(3), (2022): 118, https://doi.org/10.3390/geosciences12030118.
    Description: Lava samples from the Christmas Island Seamount Province (CHRISP) record an extreme range in enriched mantle (EM) type Sr-Nd-Pb-Hf isotope signatures. Here we report osmium isotope data obtained on four samples from the youngest, Pliocene petit-spot phase (Upper Volcanic Series, UVS; ~4.4 Ma), and four samples from the earlier, Eocene (Lower Volcanic Series, LVS; ~40 Ma) shield building phase of Christmas Island. Osmium concentrations are low (5–82 ppt) with initial Os isotopic values (187Os/188Osi) ranging from (0.1230–0.1679). Along with additional new geochemical data (major and trace elements, Sr-Nd-Pb isotopes, olivine δ18O values), we demonstrate the following: (1) The UVS is consistent with melting of shallow Indian mid-ocean ridge basalt (MORB) mantle enriched with both lower continental crust (LCC) and subcontinental lithospheric mantle (SCLM) components; and (2) The LVS is consistent with recycling of SCLM components related to Gondwana break-up. The SCLM component has FOZO or HIMU like characteristics. One of the LVS samples has less radiogenic Os (γOs –3.4) and provides evidence for the presence of ancient SCLM in the source. The geochemistry of the Christmas Island lava series supports the idea that continental breakup causes shallow recycling of lithospheric and lower crustal components into the ambient MORB mantle.
    Description: This research received no external funding.
    Keywords: Osmium isotopes ; Petit-spot volcanism ; Olivine oxygen isotopes ; Intraplate volcanism ; Christmas Island ; Indian Ocean ; CHRISP ; Crust recycling ; Lithosphere recycling ; DUPAL
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 7 (1915), S. 202-205 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 9 (1991), S. 0 
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: The island Peter I 0y is located in the BeUinghausen Sea 400 km off the coast of West Antarctica. It is situated at the transition between oceanic and contintental crust close to a former transform fault, the Tharp fracture zone. The island is completely volcanic, consisting of predominantly alkali basalt and hawaiite and some more evolved rocks. Sampling done by the Aurora expedition in 1987 has made dating and detailed petrological studies possible. The island appears to be much younger (〈0.5 Ma) than previously believed. However, the volcanic activity responsible for this oceanic island may have lasted for 10-20 Ma. Volcanic activity at the island thus took place at the same time as post-subduction rift-related volcanism took place along the Antarctic Peninsula and in Marie Byrd Land. However, the petrologic data indicate that this may be coincidental and that the Peter I 0y activity is independent and related to transtensional rifting along the Tharp fracture zone.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Basaltic lavas from the Three Sisters and Dalles Lakes were erupted from two isolated vents in the central Washington Cascades at 370–400 ka and 2.2 Ma, respectively, and have distinct trace element compositions that exemplify an important and poorly understood feature of arc basalts. The Three Sisters lavas are calc-alkaline basalts (CAB) with trace element compositions typical of most arc magmas: high ratios of large-ion-lithophile to high-field-strength elements (LILE/HFSE), and strong negative Nb and Ta anomalies. In contrast, the Dalles Lakes lavas have relatively low LILE/HFSE and no Nb or Ta anomalies, similar to ocean-island basalts (OIB). Nearly all Washington Cascade basalts with high to moderate incompatible element concentrations show this CAB or OIB-like compositional distinction, and there is pronounced divergence between the two magma types with a large compositional gap between them. We show that this trace element distinction can be easily explained by a simple model of flux-melting of the mantle wedge by a fluid-rich subduction component (SC), in which the degree of melting (F) of the peridotite source is correlated with the amount of SC added to it. Distinctive CAB and OIB-like trace element compositions are best explained by a flux-melting model in which dF/dSC decreases with increasing F, consistent with isenthalpic (heat-balanced) melting. In the context of this model, CAB trace element signatures simply reflect large degrees of melting of strongly SC-fluxed peridotite along relatively low dF/dSC melting trends, consistent with derivation from relatively cold mantle. Under other conditions (i.e., small degrees of melting or large degrees of melting of weakly SC-fluxed peridotite [high dF/dSC]), either OIB- or MORB (mid-ocean ridge basalt)-like compositions are produced. Trace element and isotopic compositions of Washington Cascade basalts are easily modeled by a correlation between SC and F across a range of mantle temperatures. This implies that the dominant cause of arc magmatism in this region is flux melting of the mantle wedge.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 15 (1993), S. 283-296 
    ISSN: 1573-0581
    Keywords: Mendocino Fracture Zone ; Gorda Ridge ; Juan de Fuca Plate ; Pacific Plate ; basalt ; K-Ar date ; basalt composition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Mendocino Fracture Zone, a 3,000-km-long transform fault, extends from the San Andreas Fault at Cape Mendocino, California due west into the central Pacific basin. The shallow crest of this fracture zone, known as the Mendocino Ridge, rises to within 1,100 m of the sea surface at 270 km west of the California Coast. Rounded basalt pebbles and cobbles, indicative of a beach environment, are the dominant lithology at two locations on the crest of Mendocino Ridge and a40Ar/39 Ar incremental heating age of 11.0 ± 1.0 million years was determined for one of the these cobbles. This basalt must have been erupted on the Gorda Ridge because the crust immediately to the south of the fracture zone is older than 27 Ma. This age also implies that the crest of Mendocino Ridge was at sea level and would have blocked Pacific Ocean eastern boundary currents and affected the climate of the North American continent at some time since the late Miocene. Basalts from the Mendocino Fracture Zone (MFZ) are FeTi basalts similar to those commonly found at intersections of mid-ocean ridges and fracture zones. These basalts are chemically distinct from the nearby Gorda Ridge but they could have been derived from the same mantle source as the Gorda Ridge basalts. The location of the 11 Ma basalt suggests that Mendocino Ridge was transferred from the Gorda Plate to the Pacific Plate and the southern end of Gorda Ridge was truncated by a northward jump in the transform fault of MFZ.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 95 (B11). pp. 17475-17502.
    Publication Date: 2016-08-03
    Description: Crystallization ages of volcanic rocks, dredged or drilled from the Walvis Ridge (ten sites) and the Rio Grande Rise (one site), have been determined by the 40Ar/39Ar incremental heating technique. The fundamentally age-progressive distribution of these basement ages suggests a common hot spot source for volcanism on the island of Tristan da Cunha, along the Walvis Ridge and Rio Grande Rise, and for the formation of the continental flood basalts located in Namibia (Africa) and Brazil (South America). The Walvis Ridge-Rio Grande Rise volcanic system evolved along a section of the South Atlantic spreading-axis, as the African and South American plates migrated apart, astride, or in close proximity to, an upwelling plume. Reconstructions of the spatial relationship between the spreading-axis, the Tristan hot spot, and the evolving Walvis Ridge-Rio Grande Rise volcanic feature show that, at about 70 Ma, the spreading-axis began to migrate westward, away from the hot spot. The resulting transition to intraplate hot spot volcanism along the Walvis Ridge (and associated termination of Rio Grande Rise formation) also involved a northward migration of previously formed African seafloor over the hot spot. Rotation parameters for African motion over fixed hot spots (i.e., absolute motion) have been recalculated such that the predicted trail of the Tristan hot spot agrees with the distribution of radiometric and fossil basement ages along the Walvis Ridge. African absolute motion has been extended to the South and North American plates, by the addition of relative motion reconstruction poles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-13
    Description: New major and trace element and Sr, Nd, and Pb isotope data, together with 39Ar-40Ar ages for lavas from the extinct Galapagos Rise spreading center in the eastern Pacific reveal the evolution in magma compositions erupted during slowdown and after the end of active spreading at a mid-ocean ridge. Lavas erupted at 9.2 Ma, immediately prior to the end of spreading are incompatible element depleted mid-ocean ridge tholeiitic basalts, whereas progressively younger (7.5 to 5.7 Ma) postspreading lavas are increasingly alkalic, have higher concentrations of incompatible elements, higher La/Yb, K/Ti, 87Sr/86Sr, and lower 143Nd/144Nd ratios and were produced by smaller degrees of mantle melting. The large, correlated variations in trace element and isotope compositions can only be explained by melting of heterogenous mantle, in which incompatible trace element enriched lithologies preferentially contribute to smaller degree mantle melts. The effects of variable degrees of melting of heterogeneous mantle on lava compositions must be taken into account when using mid-ocean ridge basalt (MORB) to infer the conditions of melting beneath active spreading ridges. For example, the stronger “garnet signature” inferred from Sm/Nd and 143Nd/144Nd ratios for postspreading lavas from the Galapagos Rise results from a larger contribution from enriched lithologies with high La/Yb and Sm/Yb, rather than from a greater proportion of melting in the stability field of garnet peridotite. Correlations between ridge depth and Sm/Yb and fractionation-corrected Na concentrations in MORB worldwide could result from variations in mantle fertility and/or variations in the average degree of melting, rather than from large variations in mantle temperature. If more fertile mantle lithologies are preferentially melted beneath active spreading ridges, then the upper mantle may be significantly more “depleted” than is generally inferred from the compositions of MORB.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-04-17
    Description: BACKGROUND Prostate cancer (PCa) is the second-leading cause of cancer death in American men. This is due largely to the “silent” nature of the disease until it has progressed to a highly metastatic and castrate resistant state. Voltage sensitive sodium channels (VSSCs) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two β subunits. The β-subunits modulate surface expression and gating kinetics of the channels but also have inherent cell adhesion molecule (CAM) functions. We hypothesize that PCa cells use VSSC β-subunits as CAMs during PCa progression and metastasis. METHODS We overexpressed the beta-2 isoform as a C-terminal fusion protein with enhanced cyan fluorescence protein (ECFP) in the weakly metastatic LNCaP cells. The effect of beta-2 overexpression on cell morphology was examined using confocal microscopy while metastasis-associated behavior was tested by performing several in vitro metastatic functional assays and in vivo subcutaneous tumor studies. RESULTS We found that cells overexpressing beta-2 (2BECFP) converted to a bipolar fibroblastic morphology. 2BECFP cells were more adhesive than control (ECFP) to vitronectin (twofold) and Matrigel® (1.3-fold), more invasive through Matrigel® (3.6-fold in 72 hr), and had enhanced migration (2.1-fold in 96 hr) independent of proliferation in wound-healing assays. In contrast, 2BECFP cells have a reduced tumor-take and tumor volume in vivo even though the overexpression of beta-2 was maintained. CONCLUSIONS Functional overexpression of VSSC β-subunits in PCa may be one mechanism leading to increased metastatic behavior while decreasing the ability to form localized tumor masses. Prostate © 2011 Wiley Periodicals, Inc.
    Print ISSN: 0270-4137
    Electronic ISSN: 1097-0045
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...