GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-17
    Description: Brightness temperatures at 1.4 GHz (L-band) measured by the Soil Moisture and Ocean Salinity (SMOS) Mission have been used to derive the thickness of sea ice. The retrieval method is applicable only for relatively thin ice and not during the melting period. Hitherto, the availability of ground truth sea ice thickness measurements for validation of SMOS sea ice products was mainly limited to relatively thick ice. The situation has improved with an extensive field campaign in the Barents Sea during an anomalous ice edge retreat and subsequent freeze-up event in March 2014. A sea ice forecast system for ship route optimisation has been developed and was tested during this field campaign with the ice-strengthened research vessel RV Lance. The ship cruise was complemented with coordinated measurements from a helicopter and the research aircraft Polar 5. Sea ice thickness was measured using an electromagnetic induction (EM) system from the bow of RV Lance and another EM-system towed below the helicopter. Polar 5 was equipped among others with the L-band radiometer EMIRAD-2. The experiment yielded a comprehensive data set allowing the evaluation of the operational forecast and route optimisation system as well as the SMOS-derived sea ice thickness product that has been used for the initialization of the forecasts. Two different SMOS sea ice thickness products reproduce the main spatial patterns of the ground truth measurements while the main difference being an underestimation of thick deformed ice. Ice thicknesses derived from the surface elevation measured by an airborne laser scanner and from simultaneous EMIRAD-2 brightness temperatures correlate well up to 1.5 m which is more than the previously anticipated maximal SMOS retrieval thickness.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-12
    Description: Arctic coastal erosion experiences pronounced effects from ongoing climate change. The Laptev Sea figures among the Arctic regions with the most severe erosion rates. Here, we use unprecedentedly long records of almost 30 years of annual in-situ coastal erosion rate measurements from Bykovsky Peninsula and Muostakh Island to separate the main modes of variability, which we attribute to large-scale drivers. The first (lower-frequency) and second (higher-frequency) modes are associated with winter sea-ice cover in the Laptev Sea and with the Arctic Oscillation, respectively, which together account for 85.1±24.1% of the total observed variance. Arctic coastal erosion has so far been neglected in Earth system models (ESMs). The proposed mechanisms set favorable conditions for coastal erosion at large scales (synoptic to planetary scales), compatible with those represented in modern ESMs.
    Keywords: 551.3 ; Arctic coastal erosion ; interannual variability ; Laptev Sea ; principal components
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-12-15
    Description: Variability of the North Atlantic Oscillation (NAO) drives wintertime temperature anomalies in the Northern Hemisphere. Dynamical seasonal prediction systems can skilfully predict the winter NAO. However, prediction of the NAO‐dependent air temperature anomalies remains elusive, partially due to the low variability of predicted NAO. Here, we demonstrate a hidden potential of a multi‐model ensemble of operational seasonal prediction systems for predicting wintertime temperature by increasing the variability of predicted NAO. We identify and subsample those ensemble members which are close to NAO index statistically estimated from initial autumn conditions. In our novel multi‐model approach, the correlation prediction skill for wintertime Central Europe temperature is improved from 0.25 to 0.66, accompanied by an increased winter NAO prediction skill of 0.9. Thereby, temperature anomalies can be skilfully predicted for the upcoming winter over a large part of the Northern Hemisphere through increased variability and skill of predicted NAO.
    Description: Plain Language Summary: Wintertime temperature in the Northern Hemisphere is regulated by the variations of atmospheric pressure, represented by the so‐called North Atlantic Oscillation (NAO). The NAO's phase—negative or positive—is associated with the pathways of cold and warm air masses leading to cold or warm winters in Europe. While the NAO phase can be predicted well, predictions of the NAO‐dependent air temperature remain elusive. Specifically, it is challenging to predict the strength of the NAO, the most important requirement for the accurate prediction of wintertime temperature. Here, we improve wintertime temperature prediction by increasing the strength of the predicted NAO. We use observation based autumn Northern Hemisphere ocean and air temperature, as well as ice and snow cover for statistical estimation of the first guess NAO for the upcoming winter. Then, we sub‐select only those simulations from the multi‐model ensemble, which are consistent with our first guess NAO. As a result, based on these selected members, the wintertime temperature prediction is substantially improved over a large part of the Northern Hemisphere.
    Description: Key Points: Amplitude and skill of predicted North Atlantic Oscillation (NAO) improve significantly by subsampling of ensemble of existing seasonal prediction systems. Amplified NAO variability leads to significant improvement in predicting the upcoming winter temperature anomalies in the Northern Hemisphere.
    Description: Deutsche Forschungsgemeinschaft
    Description: Climate, Climatic Change, and Society
    Description: Marine Institute grant
    Description: European Union's Horizon 2020 research and innovation programme
    Description: https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=overview
    Description: http://www.ecmwf.int/en/forecasts/datasets
    Keywords: ddc:551.6 ; seasonal prediction ; wintertime temperature anomalies
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...