GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 46 (1986), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: This study compared the metabolism of [125I]angiotensin II (AII), [125I]angiotensin III (AIII), and [125I]Sar1,Ile8-AII (SI-AII) in the vascular and cerebroventricular compartments. Using HPLC methods to monitor degradation the following t½, values were established in the vascular compartment: AII, 12.7 ± 1.4 s; AIII, 16.3 ± 0.7 s; and SI-AII, 100.7 ± 7.3 s. HPLC analysis also revealed that [125I]AII is converted in an obligatory manner to [125I]AIII during its degradation sequence. Cerebrospinal fluid contained no degradative capacity for [125I]AII but exhibited a significant capacity to degrade [125I]AIII. A technique that combined the intracerebroventricular injection of [125I]angiotensins followed by focused microwave fixation to stop all peptidase activity was used to determine the half-life of [125I]angiotensins in the ventricular space. Results indicated very rapid metabolism of angiotensins with the following t½ values: AII, 23.0 s; and AIII, 7.7 s. This extremely rapid, differential, and sequential metabolism of AII and AIII in two relevant body fluid compartments underscores the need for caution when interpreting data derived from intravascular and intracerebroventricular application of angiotensins. In addition the faster metabolism of AIII than AII in the ventricular space indicates that the actual potency of AIII at central angiotensin receptors is being underestimated.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 17 (1992), S. 101-106 
    ISSN: 1573-6903
    Keywords: GABA receptors ; ventral tegmental area ; receptor autoradiography ; excitotoxic lesion ; dopaminergic neurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Destruction of intrinsic neurons in the ventral tegmental area (VTA) with the excitotoxin, quinolinic acid produced a significant decrease (80%) in [3H]muscimol binding to GABAA receptors within the parabrachial pigmented and paranigral nuclei of the VTA. Selective destruction of the dopaminergic neurons with 6-hydroxydopamine (6-OHDA) did not reduce [3H]muscimol binding within the VTA. However, the destruction of dopaminergic neurons did produce an increase (20%) in [3H]muscimol binding contralateral to the lesion, suggesting a reduction in the GABAergic innervation to this region. Additionally, destruction of the VTA afferents with quinolinic acid injections in the medial accumbens failed to produce alterations in [3H]muscimol binding within the VTA. These results are consistent with the predominant localization of GABAA receptors to non-dopaminergic neurons intrinsic to the VTA.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...