GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We relocate the 1990–1991 Potenza (Southern Apennines belt, Italy) sequences and calculate focal mechanisms. This seismicity clusters along an E–W, dextral strike–slip structure. Second-order clusters are also present and reflect the activation of minor shears. The depth distribution of earthquakes evidences a peak between 14 and 20 km, within the basement of the subducting Apulian plate. The analysed seismicity does not mirror that of Southern Apennines, which include NW–SE striking normal faults and earthquakes concentrated within the first 15 km of the crust. We suggest that the E–W faults affecting the foreland region of Apennine propagate up to 25 km of depth. The Potenza earthquakes reflect the reactivation of a deep, preexisting fault system. We conclude that the seismotectonic setting of Apennines is characterized by NW–SE normal faults affecting the upper 15 km of the crust, and by E–W deeper strike–slip faults cutting the crystalline basement of the chain.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-157X
    Keywords: Site response ; Abruzzo ; underground array
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In this site response study we examined local earthquakes recorded at surface stations of a local seismic network and at a temporary underground seismic array installed in a tunnel underneath the Gran Sasso Massif in Abruzzo (central Italy). This allowed us to compare the seismic site response beneath the mountain and on the surface in similar geological environment (soft rock sites). We applied spectral ratios method on different segments of the seismograms and used different reference spectra in the 1–20 Hz frequency band. We found little or no amplification effects at most of the surface stations whereas site transfer functions evaluated with respect to underground sites show an amplification factor up to 6 in the 1–8 Hz frequency range. Coda spectral ratios estimated at soft rock sites are confirmed as good estimates of shear wave transfer function.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0840
    Keywords: foreshock ; aftershock ; validity ; probability gain ; Akaike information criterion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract The aim of this work is to quantitatively set up a simple hypothesis for occurrence of earthquakes conditioned by prior events, on the basis of a previously existing model and the use of recent instrumental observations. A simple procedure is presented in order to determine the conditional probability of pairs of events (foreshock-mainshock, mainshock-aftershock) with short time and space separation. The first event of a pair should not be an aftershock, i.e., it must not be related to a stronger previous event. The Italian earthquake catalog of the Istituto Nazionale di Geofisica (ING) (1975–1995, M ≥ 3.4), the earthquake catalog of the Japan Meteorological Agency (JMA) (1983–1994, M ≥ 3.0) and that of the National Observatory of Athens (NOA) (1982–1994, M ≥ 3.8) were analyzed. The number of observed pairs depends on several parameters: the size of the space-time quiescence volume defining nonaftershocks, the inter event time, the minimum magnitude of the two events, and the spatial dimension of the alarm volume after the first event. The Akaike information criterion has been adopted to assess the optimum set of space-time parameters used in the definition of the pairs, assuming that the occurrence rate of subsequent events may be modeled by two Poisson processes with different rates: the higher rate refers to the space-time volume defined by the alarms and the lower one simulates earthquakes that occur in the nonalarm space-time volume. On the basis of the tests carried out on the seismic catalog of Italy, the occurrence rate of M ≥ 3.8 earthquakes followed by a M ≥ 3.8 mainshock within 10 km and 10 days (validity) is 0.459. We have observed, for all three catalogs, that the occurrence rate density λ for the second event of a couple (mainshock or aftershock) of magnitude M2 subsequent to a nonaftershock of magnitude M1 in the time range T can be modeled by the following relationship: λ (T, M2) = 10a′ + b(M1 - M2) with b varying from 0.74 (Japan) to 1.09 (Greece). The decrease of the occurrence rate in time for a mainshock after a foreshock or for large aftershocks after a mainshock, for all three databases, obeys the Omori's law with p changing from 0.94 (Italy) to 2.0 (Greece).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-02
    Description: Rayleigh wave group velocity dispersion measurements from local and regional earthquakes are used to interpret the lithospheric structure in the Gulf of California region. We compute group velocity maps for Rayleigh waves from 10 to 150 s using earthquakes recorded by broad-band stations of the Network of Autonomously Recording Seismographs in Baja California and Mexico mainland, UNM in Mexico, BOR, DPP and GOR in southern California and TUC in Arizona. The study area is gridded in 120 longitude cells by 180 latitude cells, with an equal spacing of 10 10 km. Assuming that each gridpoint is laterally homogeneous, for each period the tomographic maps are inverted to produce a 3-D lithospheric shear wave velocity model for the region. Near the Gulf of California rift axis, we found three prominent low shear wave velocity regions, which are associated with mantle upwelling near the Cerro Prieto volcanic field, the Ballenas Transform Fault and the East Pacific Rise. Upwelling of the mantle at lithospheric and asthenospheric depths characterizes most of the Gulf. This more detailed finding is new when compared to previous surface wave studies in the region. A low-velocity zone in northcentral Baja at ~28ºN which extends east–south–eastwards is interpreted as an asthenospheric window. In addition, we also identify a well-defined high-velocity zone in the upper mantle beneath central-western Baja California, which correlates with the previously interpreted location of the stalled Guadalupe and Magdalena microplates. We interpret locations of the fossil slab and slab window in light of the distribution of unique post-subduction volcanic rocks in the Gulf of California and Baja California. We also observe a high-velocity anomaly at 50-km depth extending down to ~130 km near the southwestern Baja coastline and beneath Baja, which may represent another remnant of the Farallon slab.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-22
    Description: Preferential direction in rupture propagation of earthquakes is known to have strong consequences on the azimuthal distribution of the ground motion. While source directivity effects are well established for large seismic events, their observation for moderate and small earthquakes are still restricted to a few cases. This is mainly due to intrinsic difficulties in recognizing source directivity unambiguously for less energetic/shorter ruptures. Therefore, we propose the use of multiapproach analysis for revealing the possible directivity for small-to-moderate earthquakes, taking advantage of the different sensitivity of each approach to various source and propagation characteristics. Here, we demonstrate that the application of six diverse and independent methods converges in giving consistent information on the rupture kinematics of the 2013 December 29, M w  = 5.0 earthquake. The results indicate a distinct rupture propagation direction toward S-SW, which correlates with observed asymmetry of damage and felt area. Overall, we conclude that the use of a single technique cannot provide a univocal solution, whereas the application of distinct analyses helps to strongly constrain source kinematics and should be preferred, in particular when dealing with small-to-moderate earthquakes.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-01-04
    Description: Intrusions are a ubiquitous component of mountain chains and testify to the emplacement of magma at depth. Understanding the emplacement and growth mechanisms of intrusions, such as diapiric or dike-like ascent, is critical to constrain the evolution and structure of the crust. Petrological and geological data allow us to reconstruct magma pathways and long-term magma differentiation and assembly processes. However, our ability to detect and reconstruct the short-term dynamics related to active intrusive episodes in mountain chains is embryonic, lacking recognized geophysical signals. We analyze an anomalously deep seismic sequence (maximum magnitude 5) characterized by low-frequency bursts of earthquakes that occurred in 2013 in the Apennine chain in Italy. We provide seismic evidences of fluid involvement in the earthquake nucleation process and identify a thermal anomaly in aquifers where CO 2 of magmatic origin dissolves. We show that the intrusion of dike-like bodies in mountain chains may trigger earthquakes with magnitudes that may be relevant to seismic hazard assessment. These findings provide a new perspective on the emplacement mechanisms of intrusive bodies and the interpretation of the seismicity in mountain chains.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-26
    Description: In our paper we analyze the data base obtained from the observations of the Italian Seismological Network from 1975 to 1994 by using a simple algotithm to determine the rate of occurrence of seismic events condi- tioned by the occurrence of previous events after a period of quiescence. The number of observed pairs of earthquakes depends on several parameters: the magnitude threshold of the two events, the spatial and tempo- ral ranges of the quiescence period preceding the first (non aftershock) event, the time elapsed between the first and the second events and the spatial dimension of the alarm area. The Akaike information criterion was adopted to assess the optimal set of space-time parameters used in the definition of non-aftershock (events not related to a stronger previous one). In Central Italy, the rate of M ³3.8 earthquakes preceded by at least one M ~ 3.3 foreshock within 14.1 km and 2 days is 30%, while the rate of M ~ 3.3 earthquakes followed by a M ~ 3.8 mainshock in the same space time range is 7%. We observed that the probability that an earthquake of magnitude MI will be followed by an earthquake of magnitude M2 (success rate) fits the law log À = a+b (Mi -M2) with b approximately equal to l. By computing the success rate for given values of magnitude threshold of the first and the second events over a dense grid of spatial coordinates, we obtained maps of this feature over the investigated area. The results of this process document variations larger than a factor of five in the success rate over the Italian territory.
    Description: JCR Journal
    Description: open
    Keywords: aftershocks ; foreshocks ; conditional probability ; probability gain ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5351229 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: In the Apennines subduction (Italy), earthquakes mainly occur within overriding plate, along the chain axis. The events concentrate in the upper 15 km of the crust above the mantle wedge and focal solutions indicate normal faulting. In the foreland, the seismogenic volume affects the upper 35 km of the crust. Focal solutions indicate prevailing reverse faulting in the northern foreland and strike-slip faulting in the southern one. The deepening of the seismogenic volume from the chain axis to the foreland follows the deepening of the Moho and isotherms. The seismicity above the mantle wedge is associated with uplift of the chain axial zone, volcanism, high CO2 flux, and extension. The upward pushing of the asthenospheric mantle and the mantle-derived, CO2-rich fluids trapped within the crust below the chain axis causes this seismicity. All these features indicate that the axial zone of Apennines is affected by early rifting processes. In northern Italy, the widespread and deeper seismicity in the foreland reflects active accretion processes. In the southern foreland, the observed dextral strike-slip faulting and the lack of reverse focal solutions suggest that accretion processes are not active at present. In our interpretation of the Apennines subduction, the shallower seismicity of the overriding plate is due to the dynamics (uprising and eastward migration) of the asthenospheric wedge.
    Description: Published
    Description: Q02013
    Description: JCR Journal
    Description: open
    Keywords: Apenninnes ; crustal seismicity ; rifting ; subduction ; fluids ; geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2459547 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We relocate the 1990–1991 Potenza (Southern Apennines belt, Italy) sequences and calculate focal mechanisms. This seismicity clusters along an E–W, dextral strike–slip structure. Secondorder clusters are also present and reflect the activation of minor shears. The depth distribution of earthquakes evidences a peak between 14 and 20 km, within the basement of the subducting Apulian plate. The analysed seismicity does not mirror that of Southern Apennines, which include NW–SE striking normal faults and earthquakes concentrated within the first 15 km of the crust. We suggest that the E–W faults affecting the foreland region of Apennine propagate up to 25 km of depth. The Potenza earthquakes reflect the reactivation of a deep, preexisting fault system. We conclude that the seismotectonic setting of Apennines is characterized by NW–SE normal faults affecting the upper 15 km of the crust, and by E– W deeper strike–slip faults cutting the crystalline basement of the chain.
    Description: Published
    Description: 586-590
    Description: N/A or not JCR
    Description: reserved
    Keywords: Southern Apennines ; seismicity ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 377117 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...