GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-07
    Description: Highlights • In water-rich silicic systems effusions can be generated by magmas with higher water contents than explosions. • The paper presents the comparative example of effusive and explosive deposits erupted at Nisyros-Yali. • Explosive eruptions were generated by water-rich magmas that were water-undersaturated during pre-eruptive storage. • Effusive eruptions were generated by water-richer magmas that were water-supersaturated during pre-eruptive storage. • The role of pre-eruptive exsolved volatiles in controlling eruptive styles is explored. Arc volcanoes generally emit water-rich, high-viscosity silicic magmas, which are prone to erupt explosively. However, effusive behavior is a common occurrence despite the high-H2O, high viscosity conditions. The contrasting shift from effusive to explosive behavior (and vice-versa) at any individual volcano raises the question on what controls eruptive style. Permeability development in conduits allows magma to outgas and is clearly a key factor. However, an important question is whether magma reservoir processes can also have an influence on eruptive styles. The answer could have direct impact on predicting eruptive behavior. Hence, we explore this potential connection by analyzing nine alternating effusive and explosive silicic deposits that were emplaced during distinct eruptions at the active Nisyros-Yali volcanic center. The lavas and pyroclastic deposits are compositionally similar. This indicates a negligible influence of the bulk rock composition on different eruptive styles. The crystal contents vary between units, without any clear correlation with eruptive style (from nearly aphyric to ~45 vol% crystals). Mineral textures and chemistry do show variations between effusive and explosive eruptions, with a larger proportion of resorbed plagioclase and, in most cases, more evolved amphiboles present in the lava flows. Mineral thermo-barometry and hygrometry show that the storage zones of magmas generating effusive eruptions evolved towards colder and more water-rich conditions (710–790 °C; 5.6–6.5 wt% H2O) than their explosive counterparts (815–850 °C; 4.2–4.6 wt% H2O). At storage pressures of 1.5–2 kbar, relevant for Nisyros-Yali, the volatile saturation level is reached at 〉5 wt% H2O. Therefore, it is likely that the magmas reached water-saturation before generating effusive eruptions, and were undersaturated before explosive events. We hypothesize that the presence of exsolved volatiles in the subvolcanic reservoir can enhance the outgassing potential of the magma during conduit ascent. Hence, the rhyolitic effusive-explosive transitions can be influenced by the pre-eruptive exsolved versus dissolved state of the volatiles in the magma chamber. This can lead to the less explosive eruptions for the most water-rich reservoir conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-24
    Description: The frequent number of explosive events at Mt. Etna, in Italy, over the last ten years, has made necessary the improvement of volcanic ash monitoring and forecasting system at the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (INGV-OE). Tephra fallout produced during Etna lava fountains largely impact the population living on the volcano flanks. In addition, during one of the most powerful paroxysms, large clasts fell in proximal areas injured tourists and hikers. To reduce risk, the Italian Department Civil Protection (DPC) asked and funded INGV-OE to do a research project finalized to three specific objectives. First, identify the plume scenario (i.e. weak plume scenario (WPS) and strong plume scenarios (SPS)) based on 1-D plume model. Second, forecast characteristics of tephra deposition using near real time observations. Third, identify the region possibly impacted by large clasts (〉5 cm). Two algorithms were developed to measure the column height. One from the calibrated images of two visible cameras installed on the S and W flanks of the volcano, respectively; and the other one from satellite data using a procedure based on the computation of the volcanic plume-top brightness temperature at 10.8 mm. The analysis of lava fountains that occurred between 2011 and 2015 provided the opportunity to differentiate between weak, transitional and strong plumes. The uncertainty associated with eruption source parameters, while maintaining a fixed plume height, was also assessed. In the near future the implementation of these products into the INGV-OE - monitoring room will guarantee a better and timely information to civil protection authorities charged of risk prevention at different levels of responsibility.
    Description: Published
    Description: Napoli
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: Etna ; tephra ; fallout ; explosive ; eruptions ; impact
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-28
    Description: Understanding the mechanisms that control the accumulation of large silicic magma bodies in the upper crust is key to determining the potential of volcanoes to form caldera-forming eruptions. Located in one of the most populated regions on Earth, Camp Flegrei is an active and restless volcano that has produced two cataclysmic caldera-forming eruptions and numerous smaller eruptive events over the past 60,000 years. Here, we combine the results of an extensive petrological survey with a thermomechanical model to investigate how the magmatic system shifts from frequent, small eruptions to large caldera-forming events. Our data reveal that the most recent eruption of Monte Nuovo is characterized by highly differentiated magmas akin to those that fed the pre-caldera activity and the initial phases of the caldera-forming eruptions. We suggest that this eruption is an expression of a state shift in magma storage conditions, whereby substantial amounts of volatiles start to exsolve in the shallow reservoir. The presence of an exsolved gas phase has fundamental consequences for the physical properties of the reservoir and may indicate that a large magma body is currently accumulating underneath Campi Flegrei.
    Description: Published
    Description: eaat9401
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 489 (2018): 49-58, doi:10.1016/j.epsl.2018.02.025.
    Description: A long-standing conceptual model for deep submarine eruptions is that high hydrostatic pressure hinders degassing and acceleration, and suppresses magma fragmentation. The 2012 submarine rhyolite eruption of Havre volcano in the Kermadec arc provided constraints on critical parameters to quantitatively test these concepts. This eruption produced a 〉 1 km3 raft of floating pumice and a 0.1 km3 field of giant (〉1 m) pumice clasts distributed down-current from the vent. We address the mechanism of creating these clasts using a model for magma ascent in a conduit. We use water ingestion experiments to address why some clasts float and others sink. We show that at the eruption depth of 900 m, the melt retained enough dissolved water, and hence had a low enough viscosity, that strain-rates were too low to cause brittle fragmentation in the conduit, despite mass discharge rates similar to Plinian eruptions on land. There was still, however, enough exsolved vapor at the vent depth to make the magma buoyant relative to seawater. Buoyant magma was thus extruded into the ocean where it rose, quenched, and fragmented to produce clasts up to several meters in diameter. We show that these large clasts would have floated to the sea surface within minutes, where air could enter pore space, and the fate of clasts is then controlled by the ability to trap gas within their pore space. We show that clasts from the raft retain enough gas to remain afloat whereas fragments from giant pumice collected from the seafloor ingest more water and sink. The pumice raft and the giant pumice seafloor deposit were thus produced during a clast-generating effusive submarine eruption, where fragmentation occurred above the vent, and the subsequent fate of clasts was controlled by their ability to ingest water.
    Description: MM, KF, CL and BH are supported by NSF 1447559. SM and BH are supported by NSF 1357443. RJC was funded by the Australian Research Council (DP110102196, DE150101190). AS is supported by NSF 1357216. MJ is supported by a National Defense Science and Engineering Graduation Fellowship. Additional support was provided by the Marsden fund and the 2017 Student Mentoring and Research Teams (SMART) Program, Graduate Division, University of California, Berkeley.
    Keywords: Submarine eruption ; Pumice ; Fragmentation ; Raft ; Conduit flow ; Xray tomography
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-03
    Description: Processes occurring in volcanic conduits, the pathways through which magma travels from its storage region to the surface, have a fundamental control on the nature of eruptions and associated phenomena. It has been well established that magma flows, crystallizes, degasses, and fragments in conduits, that fluids migrate in and out of conduits, and that seismic and acoustic waves are generated and travel within conduits. A better understanding of volcanic conduits and related processes is of paramount importance for improving eruption forecasting, volcanic hazard assessment and risk mitigation. However, despite escalating advances in the characterization of individual conduit processes, our understanding of their mutual interactions and the consequent control on volcanic activity is still limited. With the purpose of addressing this topic, a multidisciplinary workshop led by a group of international scientists was hosted from 25 to 27 October 2014 by the Pisa branch of the Istituto Nazionale di Geofisica e Vulcanologia under the sponsorship of the MeMoVolc Research Networking Programme of the European Science Foundation. The workshop brought together the experimental, theoretical, and observational communities devoted to volcanological research. After 3 days of oral and poster presentations, breakout sessions, and plenary discussions, the participants identified three main outstanding issues common to experimental, analytical, numerical, and observational volcanology: unsteadiness (or transience), disequilibrium, and uncertainty. A key outcome of the workshop was to identify the specific knowledge areas in which exchange of information among the subdisciplines would lead to efficient progress in addressing these three main outstanding issues. It was clear that multidisciplinary collaboration of this sort is essential for progressing the state of the art in understanding of conduit magma dynamics and eruption behavior. This holistic approach has the ultimate aim to deliver fundamental improvements in understanding the underlying processes generating and controlling volcanic activity.
    Description: Published
    Description: S0666
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-22
    Description: Explosive basaltic eruptions pose significant threats to local communities, regional infrastructures and international airspace. They produce tephra plumes that are often associated with a lava fountain, complicating their dynamics. Consequently, source parameters cannot be easily constrained using traditional formulations. Particularly, mass flow rates (MFRs) derived from height observations frequently differ from field deposit-derived MFRs. Here, we investigate this discrepancy using a novel integral plume model that explicitly accounts for a lava fountain, which is represented as a hot, coarse-grained inner plume co-flowing with a finer-grained outer plume. The new model shows that a plume associated with a lava fountain has higher variability in rise height than a standard plume for the same initial MFR depending on initial conditions. The initial grain-size distribution and the relative size of the lava fountain compared to the surrounding plume are primary controls on the final plume height as they determine the strength of coupling between the two plumes. We apply the new model to the August 29, 2011 paroxysmal eruption of Mount Etna, Italy. The modeled MFR profile indicates that the field-derived MFR does not correspond to that at the vent, but rather the MFR just above the lava fountain top. High fallout from the lava fountain results in much of the erupted solid material not reaching the top of the plume. This material deposits to form the proximal cone rather than dispersing in the atmosphere. With our novel model, discrepancies between the two types of observation-derived MFR can be investigated and understood.
    Description: Published
    Description: e2020JB021360
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-06
    Description: During explosive eruptions, emergency responders and government agencies need to make fast decisions that should be based on an accurate forecast of tephra dispersal and assessment of the expected impact. Here, we propose a new operational tephra fallout monitoring and forecasting system based on quantitative volcanological observations and modelling. The new system runs at the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (INGV-OE) and is able to provide a reliable hazard assessment to the National Department of Civil Protection (DPC) during explosive eruptions. The new operational system combines data from low-cost calibrated visible cameras and satellite images to estimate the variation of column height with time and model volcanic plume and fallout in near-real-time(NRT). The new system has three main objectives: (i) to determine column height in NRT using multiple sensors (calibrated cameras and satellite images); (ii) to compute isomass and isopleth maps of tephra deposits in NRT; (iii) to help the DPC to best select the eruption scenarios run daily by INGV-OE every three hours. A particular novel feature of the new system is the computation of an isopleth map, which helps to identify the region of sedimentation of large clasts (≥5 cm) that could cause injuries to tourists, hikers, guides, and scientists, as well as damage buildings in the proximity of the summit craters. The proposed system could be easily adapted to other volcano observatories worldwide.
    Description: Published
    Description: id 2987
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: hazard assessment ; column height ; near-real-time forecasts ; maximum clast forecasts ; operational system ; Etna volcano
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-09
    Description: Video cameras provide vital information on volcanic plumes from explosive eruptions, such as plume height, for monitoring and research. These images must be calibrated to get accurate quantitative data. However, the presence of wind complicates any calibration as the plume may no longer lie in the image plane, i.e. a plane perpendicular to the camera’s line-of-sight. Here, we present a simple new tool to correct for the effect of wind on the position and height of a volcanic plume as determined from imagery by rotating the image plane to be in the direction of the wind. We show the importance of accounting for the effect of wind on the maximum plume height determined from videos for two case-studies; a Vulcanian explosion from Sabancaya volcano, Peru, and a sustained plume from Mount Etna, Italy. This tool can improve the accuracy of quantitative information extracted from images of volcanic plumes, and should prove useful for both research and monitoring purposes.
    Description: Published
    Description: 447458
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: N/A or not JCR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...