GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Geoecology. ; Environmental geology. ; Parasitology. ; Paleontology . ; Evolutionary biology. ; Virology. ; Pathology. ; Fossile Wirbeltiere ; Fossil ; Wirt ; Paläobiologie ; Paläontologie ; Parasit ; Parasit ; Palökologie ; Fossile Pilze ; Fossile Einzeller ; Fossile Wirbellose
    Description / Table of Contents: Chapter 1. Parasites of Fossil Vertebrates: What We Know and What can We Expect from the Fossil Record? -- Chapter 2. Fossil Record of Viruses, Parasitic Bacteria and Parasitic Protozoa -- Chapter 3. Fungi as Parasites: A Conspectus of the Fossil Record -- Chapter 4: Evolution, Origins and Diversification of Parasitic Cnidarians -- Chapter 5. Evolutionary History of Bivalves as Parasites -- Chapter 6. Gastropods as Parasites and Carnivorous Grazers – A Major Guild in Marine Ecosystems -- Chapter 7: Fossil Constraints on the Timescale of Parasitic Helminth Evolution -- Chapter8. Thorny-headed Worms (Acanthocephala): Jaw-less Members of Jaw-bearing Worms that Parasitize Jawed Arthropods and Jaw-bearing Vertebrates -- Chapter 9. Chelicerates as Parasites -- Chapter 10. Evolutionary History of Crustaceans as Parasites -- Chapter 11. The History of Insect Parasitism and the Mid-Mesozoic Parasitoid Revolution.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XII, 565 p. 147 illus., 96 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030424848
    Series Statement: Topics in Geobiology 49
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Geoecology. ; Environmental geology. ; Parasitology. ; Paleontology . ; Evolutionary biology. ; Virology. ; Pathology.
    Description / Table of Contents: Chapter 1. The fossil record of parasitism: Its extent and taphonomic constraints -- Chapter 2. Importance of data on fossil symbioses for parasite-host evolution -- Chapter 3. Biodiversity and host-parasite (co)extinction -- Chapter 4. Evolutionary history of colonial organisms as hosts and parasites -- Chapter 5. Crustaceans as hosts of parasites throughout the Phanerozoic -- Chapter 6. Trilobites as hosts for parasites: From paleopathologies to ethiologies -- Chapter 7. Evolutionary history of cephalopod pathologies linked with parasitism -- Chapter 8. Bivalve Mollusks as Hosts in the Fossil Record -- Chapter 9. Parasitism of Paleozoic Crinoids and Related Stalked Echinoderms: Paleopathology, Ichnology, Co-Evolution, and Evolutionary Paleoecology -- Chapter 10. Deep origin of parasitic disease in vertebrates -- Chapter 11. Gastrointestinal parasites of ancient non-human vertebrates: Evidence from coprolites and other materials -- Chapter 12. Blood to Molecules: The Fossil Record of Blood and its Constituents -- Chapter 13. The Molecular Clock as a Tool for Understanding Host-Parasite Evolution -- Chapter 14. Horizontal Transfer of Transposons as Genomic Fossils of Host-Parasite Interactions.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VIII, 486 p. 69 illus., 41 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030522339
    Series Statement: Topics in Geobiology 50
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Evolution (Biology). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (487 pages)
    Edition: 1st ed.
    ISBN: 9783030522339
    Series Statement: Topics in Geobiology Series ; v.50
    DDC: 571.999
    Language: English
    Note: Intro -- Foreword -- Contents -- Chapter 1: The Fossil Record of Parasitism: Its Extent and Taphonomic Constraints -- 1.1 Introduction -- 1.2 Exceptional Fossil Windows on Parasite-Host Evolution -- 1.2.1 Modes of Exceptional Fossil Preservation -- 1.2.2 Burgess Shale-Type Preservation and Parasitism -- 1.2.3 Orsten-Type Preservation and Parasitism -- 1.2.4 Petrification, Nodular Preservation, and Parasitism -- 1.2.5 Lithographic Limestone Preservation and Parasitism -- 1.2.6 Bituminous/Oil Shales, Coal Deposits, and Parasitism -- 1.2.7 Conservation Traps (Amber, Leech Cocoons, and Coprolites) and Parasitism -- 1.2.8 Other Types of Parasite Lagerstätten -- 1.2.9 Evolutionary History of Parasitism Recorded in Konservat-Lagerstätten -- 1.3 Potential and Limits of Lagerstätten -- 1.4 Host Remains as Proxy for Parasite-Host Interactions -- 1.4.1 Possibilities and Limits of Decay-Resistant Propagules in Host Coprolites -- 1.4.2 Possibilities and Limits of Pathologies in Skeletal Hosts -- 1.5 Conclusions -- References -- Chapter 2: Importance of Data on Fossil Symbioses for Parasite-Host Evolution -- 2.1 Importance of Meanings to Address the Fossil Record -- 2.1.1 Symbioses and Paleosymbioses as Primary References -- 2.1.2 Parasitism as Subclass of Symbioses -- 2.2 Evidence of Past Symbiotic Interactions -- 2.2.1 Involving Extinct Taxa -- As Hosts -- As Colonizers -- In General -- 2.2.2 Unreported in Modern Nature -- 2.3 Constraints on the Evolution of Associations -- 2.3.1 Ancestry of Organisms and Associations -- 2.3.2 Evolution of Associations over Time -- General Rules in Species Encountering, Attachment and Symbiont Internalization -- Resistance Stages and Symbiotic Lifestyles -- Infestations and Host-Symbiont Resilience -- 2.4 Conclusions -- References -- Chapter 3: Biodiversity and Host-Parasite (Co)Extinction -- 3.1 Introduction. , 3.2 Host-Parasite Biodiversity -- 3.3 Co-extinction -- 3.4 Dilution Effect -- 3.5 Host Switching -- 3.6 Parasites as Drivers and Regulators -- 3.7 What Can the Fossil Record Tell Us? -- References -- Chapter 4: Evolutionary History of Colonial Organisms as Hosts and Parasites -- 4.1 Introduction -- 4.2 Sponges as Hosts of Parasites -- 4.2.1 Stromatoporoids -- 4.2.2 Other Sponges -- 4.3 Corals as Hosts of Parasites -- 4.3.1 Tabulates -- 4.3.2 Rugose Corals -- 4.3.3 Mesozoic to Recent Corals -- 4.4 Bryozoans as Hosts of Parasites -- 4.5 Possible Parasites in Graptolites -- 4.6 Colonial Organisms as Parasites -- 4.7 Discussion -- References -- Chapter 5: Crustaceans as Hosts of Parasites Throughout the Phanerozoic -- 5.1 Introduction -- 5.2 Isopod Swellings in Decapod Crustaceans -- 5.2.1 General Information -- 5.2.2 Global Meso- and Cenozoic Data -- 5.2.3 Abundance vs. Infestation Percentage per Taxon -- 5.2.4 Host Preference -- 5.2.5 Size of Parasitized Versus Non-parasitized Specimens -- 5.3 Rhizocephalan Barnacles in Decapod Crustaceans -- 5.4 Ciliates on Ostracods -- 5.5 "Pentastomids" on Ostracods -- 5.6 Modern Evidence with Preservation Potential -- Appendix 1 Genus and family level infestation percentages for decapods from the Late Jurassic (Tithonian) of Ernstbrunn, Austria -- Appendix 2 Sizes of infested and non-infested carapaces for two decapod species from the Late Jurassic (Tithonian) of Ernstbrunn, Austria -- References -- Chapter 6: Trilobites as Hosts for Parasites: From Paleopathologies to Etiologies -- 6.1 Introduction -- 6.2 Parasites and Pathologies in Modern Marine Arthropods -- 6.3 Parasites and Pathologies in Trilobites -- 6.4 Types of Pathologies -- 6.4.1 Neoplasia -- 6.4.2 Borings -- 6.4.3 Shell Disease Syndrome -- 6.4.4 Pits -- 6.4.5 Other Types of Abnormalities Less Confidently Linked with Parasitism. , 6.4.6 Epizoa and Epicoles -- 6.5 Possible Culprits -- 6.6 Conclusions -- References -- Chapter 7: Evolutionary History of Cephalopod Pathologies Linked with Parasitism -- 7.1 Introduction -- 7.2 Parasites and Pathologies in Cephalopods -- 7.3 Pathologies Attributed to Parasitism in Externally Shelled Cephalopods -- 7.3.1 Blisters and Pits -- 7.3.2 Volume-Enlarging Pathologies -- 7.3.3 Disturbances in Apertural Shell Growth -- 7.3.4 Symmetropathologies -- Symmetropathologies in the Shell -- Symmetropathologies in the Septa -- 7.3.5 Pathological Gigantism -- 7.3.6 Other Pathologies Attributed to Parasitism in Externally Shelled Cephalopods -- 7.3.7 Negative Effects of Epizoa and Bioerosion -- 7.4 Pathologies in Coleoids -- 7.4.1 Lumps and Blisters in Internally Shelled Cephalopods -- 7.4.2 Additional Injuries Attributed to Parasitism in Internally Shelled Cephalopods -- 7.5 Prevalence of Pathologies Within Assemblages -- 7.6 Conclusions and Future Perspectives -- References -- Chapter 8: Bivalve Mollusks as Hosts in the Fossil Record -- 8.1 Introduction -- 8.2 Parasites of Modern Bivalves -- 8.3 Parasites of Bivalves in the Fossil Record -- 8.3.1 Foraminifera as Parasites in the Fossil Record -- 8.3.2 Porifera as Parasites in the Fossil Record -- 8.3.3 Hydroids as Parasites in the Fossil Record -- 8.3.4 Platyhelminthes as Parasites in the Fossil Record -- 8.3.5 Annelida as Parasites in the Fossil Record -- 8.3.6 Phoronida as Parasites in the Fossil Record -- 8.3.7 Mollusca as Parasites in the Fossil Record -- 8.3.8 Bryozoa as Parasites in the Fossil Record -- 8.3.9 Unknown Phyla as Parasites in the Fossil Record -- 8.4 Phanerozoic Scale Trends in Parasite-Host Interactions Among Bivalves -- 8.5 Trematode-Bivalve Parasite-Host Dynamics Through Sea-Level Cycles -- 8.6 Conclusions -- References. , Chapter 9: Parasitism of Paleozoic Crinoids and Related Stalked Echinoderms: Paleopathology, Ichnology, Coevolution, and Evolutionary Paleoecology -- 9.1 Introduction -- 9.2 Parasitic Pits in Stalked Echinoderms -- 9.3 Platyceratid Gastropods Attached to Stalked Echinoderms -- 9.4 Other Forms of Parasitic Interactions Involving Stalked Echinoderms -- 9.5 Discussion -- 9.5.1 Ichnology -- 9.5.2 Coevolution -- 9.5.3 Macroevolutionary Implications -- 9.6 Summary -- References -- Chapter 10: Deep Origin of Parasitic Disease in Vertebrates -- 10.1 Introduction -- 10.2 Co-divergence and Host Response: Vertebrates as Hosts -- 10.3 Endoparasites -- 10.3.1 Nematodes -- 10.3.2 Cestodes -- 10.3.3 Trematodes -- 10.3.4 Protozoa -- Amoebozoa and Ciliates -- Flagellates -- Sporozoans -- Coccidians -- 10.4 Ectoparasites and Arthropod Vectors -- 10.4.1 Lice -- 10.4.2 Fleas -- 10.4.3 Mites -- 10.4.4 Ticks -- 10.5 Bacterial and Fungal Infections -- 10.6 Viral Infection -- 10.7 Conclusion -- References -- Chapter 11: Gastrointestinal Parasites of Ancient Nonhuman Vertebrates: Evidence from Coprolites and Other Materials -- 11.1 Introduction -- 11.2 Fossil Gastrointestinal Parasites -- 11.2.1 Fossil Holocene Parasites from Nonhuman Vertebrates -- Holocene Coprolites -- Fossil Holocene Raptor Pellets -- Gut Regions of Fossil Holocene Carcasses -- Sediment from Frequented Sites -- 11.2.2 Pre-Holocene Parasites from Nonhuman Vertebrates -- Pre-Holocene Lithified Coprolites -- Gut Regions of Pre-Holocene Carcasses -- 11.3 Taphonomy of Parasites and Lithified Coprolites -- 11.4 Archaeological Perspectives on Fossil Parasites from Lithified Coprolites -- 11.5 Conclusions -- References -- Chapter 12: Blood to Molecules: The Fossil Record of Blood and Its Constituents -- 12.1 Introduction -- 12.2 Blood Residues and Vessels -- 12.3 Blood Cells -- 12.4 Blood Parasites In Situ. , 12.5 Molecular Components of Blood -- 12.5.1 DNA -- 12.5.2 Protein -- 12.5.3 Small Molecules -- 12.6 Taphonomy -- 12.7 Conclusions -- References -- Chapter 13: The Molecular Clock as a Tool for Understanding Host-Parasite Evolution -- 13.1 Introduction -- 13.2 The Molecular Clock -- 13.3 Bayesian Divergence Time Estimation -- 13.4 Substitution Models -- 13.4.1 Models of Molecular Evolution -- 13.4.2 Models of Morphological Evolution -- 13.5 Molecular Clock Models -- 13.6 Molecular Clock Calibrations -- 13.6.1 Minimum and Maximum Constraints on Divergence Times -- 13.6.2 Incorporating Extinct Samples into the Tree -- 13.6.3 The Fossil Record of Parasites as a Source of Calibrations -- 13.6.4 The Fossil Record of Hosts as a Source of Calibrations -- 13.6.5 Caveats to Using Hosts as Calibrations -- 13.6.6 Biogeographic Constraints on Divergence Times -- 13.7 Wolbachia: A Case Study -- 13.8 Prospects for Understanding the Coevolutionary Dynamics of Host and Parasites -- References -- Chapter 14: Horizontal Transfer of Transposons as Genomic Fossils of Host-Parasite Interactions -- 14.1 Introduction -- 14.2 How Can Horizontal Transposon Transfers Inform About Host-Parasite Associations? -- 14.3 Examples for Host-Parasite HTT -- 14.3.1 LTR Retrotransposons -- 14.3.2 Non-LTR Retrotransposons -- 14.3.3 DNA Transposons -- 14.4 Possible Vectors Facilitating Host-Parasite HTT -- 14.5 Limitations and Open Questions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Zoology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (943 pages)
    Edition: 1st ed.
    ISBN: 9789401796309
    Series Statement: Topics in Geobiology Series ; v.43
    DDC: 564.53
    Language: English
    Note: Intro -- List of Contributions to Ammonoid Research by Seilacher -- Foreword to the New Edition -- Foreword to the First Edition: Ammonoids Do It All -- Preface -- Contents -- Contributors -- Part I -- Conch -- Chapter-1 -- Describing Ammonoid Conchs -- 1.1 Introduction -- 1.2 Geometry -- 1.2.1 Classical Conch Parameters -- 1.2.2 Cross Section and Ratios -- 1.2.3 Expansion Rates -- 1.3 Ornamentation -- 1.3.1 Radial Elements -- 1.3.2 Spiral Elements -- 1.3.3 Spines, Nodes, Tubercles -- 1.4 Septa -- 1.4.1 Suture Line -- 1.4.2 The Septum in Space -- 1.5 Discriminating New Species -- 1.5.1 Ontogeny -- 1.5.2 Intraspecific Variability and the Quality of Characters -- 1.5.3 Number of Specimens and Figures -- 1.6 Organizing A Species Description -- References -- Chapter-2 -- Ammonoid Color Patterns -- 2.1 Introduction and Background -- 2.2 Additional Reports of Ammonoid Color Patterns -- 2.3 False Color Patterns -- 2.3.1 Background -- 2.3.2 Reports -- 2.4 Iridescent Color Patterns -- 2.4.1 Background -- 2.4.2 Locations, Description, and Ages of Specimens -- 2.5 Habitat and Life Mode -- 2.6 Conclusions -- 2.6.1 General Summary -- 2.6.2 Iridescent Color Patterns -- 2.6.3 Habitat and Function of Pigment Emplaced Color Patterns -- References -- Chapter-3 -- Ammonoid Septa and Sutures -- 3.1 Introduction -- 3.2 Ammonoid Septal Formation Models -- 3.2.1 Viscous Fingering Model -- 3.2.2 Tie-Point Model -- 3.2.3 Reaction-Diffusion Model -- 3.2.4 Composite Model -- 3.3 Differentiation and Mechanical Properties of the Septal Mantle: Form and Function -- 3.4 Septal Function -- 3.5 Sutures in Ammonoid Phylogeny -- 3.6 Phylogenetic Applicability of Sutures Case Study: Septal Lobe and Other Interpenetrating Septa -- 3.6.1 Morphology of the Septal Lobe -- 3.6.2 Evolution of a Constituting Character -- 3.6.3 Possible Function of the Septal Lobe -- 3.7 The Septal Mantle. , 3.7.1 The Septal Mantle and the Viscous Fingering Model -- 3.7.2 The Septal Mantle and the Tie-Point Model -- 3.7.3 The Septal Mantle and the Reaction-Diffusion Model -- 3.7.4 Function of the Septal Mantle -- 3.8 Revised Chamber Formation Cycle -- 3.9 Septal Precipitation Model -- References -- Chapter-4 -- Cameral Membranes, Pseudosutures, and Other Soft Tissue Imprints in Ammonoid Shells -- 4.1 Introduction -- 4.2 Cameral Membranes -- 4.2.1 Taxonomic Occurrence -- 4.2.2 Structure and Composition -- 4.2.3 Formation -- 4.2.4 Function -- 4.3 Pseudosutures and Drag Lines -- 4.3.1 Taxonomic Occurrence -- 4.3.2 Structure and Composition -- 4.3.3 Formation -- 4.3.4 Implications for Growth -- 4.4 Other Soft Tissue Imprints -- 4.4.1 Blood Vessel Imprints -- References -- Part II -- Ontogeny -- Chapter-5 -- Ammonoid Embryonic Development -- 5.1 Introduction -- 5.2 Description of the Ammonitella -- 5.2.1 Terminology -- 5.2.2 Shape -- 5.2.3 Size -- 5.2.4 Ornamentation -- 5.2.5 Microstructure of the Shell Wall -- 5.2.6 Septa -- 5.2.7 Siphuncle, Caecum, and Prosiphon -- 5.2.8 Muscle Scars -- 5.3 Sequence of Embryonic Development -- 5.4 Post-Hatching Mode of Life -- 5.5 Reproductive Strategy and Egg-Laying -- 5.6 Conclusions and Future Perspectives -- References -- Chapter-6 -- Theoretical Modelling of the Molluscan Shell: What has been Learned From the Comparison Among Molluscan Taxa? -- 6.1 Introduction -- 6.2 Shell Morphology -- 6.2.1 Geometric Models -- 6.2.2 Space Curve Models -- 6.2.3 Kinematic models -- 6.2.4 Mechanical Models -- 6.3 Shell Ornamentation and Pigmentation -- 6.3.1 Lateral Inhibition Models -- 6.3.2 Mechanical Models -- 6.4 Empirical Data and Comparison with other Molluscs -- 6.4.1 Similar Principles Underlie Growth Features -- 6.4.2 Teratology as Natural Experiments -- 6.5 Conclusions -- References -- Chapter-7. , Mature Modifications and Sexual Dimorphism -- 7.1 Introduction -- 7.2 Mature Modifications -- 7.2.1 Modifications in Recent Nautilida -- 7.2.2 Modifications in Ammonoidea -- 7.2.3 Constructional and Functional Morphology -- 7.3 Dimorphism -- 7.3.1 Monomorphism, Dimorphism, and Polymorphism -- 7.3.2 Classification of Dimorphism -- 7.3.3 Criteria for Dimorphism -- 7.3.4 Sexing of Ammonoid Antidimorphs -- 7.3.5 Development and Dimorphism -- 7.3.6 Evolution of Dimorphism -- 7.3.7 Occurrences of Dimorphism -- 7.4 Open Questions -- 7.4.1 Intraspecific Variability of Antidimorphs -- 7.4.2 Macroevolution of Mature Modifications and Dimorphism -- 7.4.3 Taxonomic Treatment of Antidimorphs -- 7.4.4 Devonian to Triassic Dimorphism -- References -- Chapter-8 -- Ammonoid Shell Microstructure -- 8.1 Introduction -- 8.2 Embryonic Stage -- 8.2.1 Existing Structural Models -- 8.2.2 Structure of the Ammonitella Walls -- 8.2.3 Apertural Zone of the Ammonitella -- 8.2.4 Structure of the Initial Chamber Wall and Proseptum -- 8.2.5 Dorsal Wall of the Ammonitella -- 8.2.6 Ornamentation of the Ammonitella -- 8.3 Postembryonic Stage -- 8.3.1 Products of the Anterior Mantle Edge -- 8.4 Modifications of the Shell Wall -- 8.4.1 Inner Shell Wall of the Dactylioceratidae -- 8.4.2 Dorsal Wall -- 8.4.3 Umbilical Plugs and Encrusting Layers -- 8.4.4 Septa -- 8.4.5 Septal Neck-Siphuncular Complex -- 8.4.6 Intracameral Membranes -- 8.5 Conclusions -- References -- Chapter-9 -- Ammonoid Intraspecific Variability -- 9.1 Introduction -- 9.2 Definitions -- 9.3 Sources of Variation within and between Fossil Populations -- 9.4 Types of Intraspecific Variation in Ammonoids -- 9.4.1 Continuous Variation -- 9.4.2 Discontinuous Variation -- 9.4.3 Variation in the Suture Line -- 9.5 Influence of Intraspecific Variation on Ammonoid Studies -- 9.6 Intraspecific Variation through Ontogeny. , 9.7 Size-At-Age Variation in Ammonoids -- 9.8 Ecophenotypic Variation -- 9.9 Quantification, Analysis and Comparison of Intraspecific Variation -- 9.9.1 Univariate and Bivariate Methods -- 9.9.2 Multivariate Methods -- 9.9.3 Comparing the Range of Intraspecific Variation -- 9.10 Conclusions and Future Perspectives -- References -- Part III -- Anatomy -- Chapter-10 -- Ammonoid Buccal Mass and Jaw Apparatus -- 10.1 Introduction -- 10.2 Buccal Mass Structures of Modern Cephalopods -- 10.3 Restoration of Ammonoid Jaw Apparatus -- 10.3.1 Recognition of in Situ Jaw Apparatus -- 10.3.2 Taphonomic Problems -- 10.3.3 Ammonoid Jaw Morphotypes -- 10.4 Restoration of Ammonoid Buccal Mass Structure -- 10.5 Discussion -- 10.5.1 Taxonomic Evaluation of Jaw Morphology -- 10.5.2 Feeding and Dietary Habits Inferred from Jaw Apparatuses and Gut Contents -- 10.5.3 Secondary Function of Aptychi? -- 10.6 Summary -- References -- Chapter-11 -- Ammonoid Radula -- 11.1 Introduction -- 11.2 Formation of the Radula in Cephalopods -- 11.3 Terminology -- 11.4 Composition -- 11.5 The Radula in the Nautilidae -- 11.6 The Radula in Other Cephalopods -- 11.7 The Radula in Ammonoids -- 11.7.1 Goniatitina -- 11.7.2 Ceratitina -- 11.7.3 Ammonitina -- 11.7.4 Ancyloceratina -- 11.8 Discussion -- 11.8.1 Phylogenetic Implications -- 11.8.2 Function of the Radula -- References -- Chapter-12 -- Soft Part Anatomy of Ammonoids: Reconstructing the Animal Based on Exceptionally Preserved Specimens and Actualistic Comparisons -- 12.1 Introduction -- 12.2 Digestive Tract -- 12.2.1 Oesophagus -- 12.2.2 Crop and Stomach -- 12.3 Cephalic Cartilage and Sensory Organs -- 12.4 Arms -- 12.5 Gills -- 12.6 Ink Sac or Not? -- 12.7 Hyponome -- 12.8 Glaphyrites: Its Buccal Mass and Other Organic Remains -- References -- Chapter-13 -- Soft-Part Anatomy of the Siphuncle in Ammonoids -- 13.1 Introduction. , 13.2 Materials and Methods -- 13.3 Anatomy of Siphuncles of Extant Nautilus and Extinct Ammonoids -- 13.3.1 Nautilus -- 13.3.2 Ammonoids -- 13.4 Discussion -- 13.4.1 Comparative Anatomy -- 13.4.2 Functional Morphology -- 13.5 Conclusion -- References -- Chapter-14 -- Body Chamber Length Variations and Muscle and Mantle Attachments in Ammonoids -- 14.1 Introduction -- 14.2 Previous Studies -- 14.3 Terminology and Abbreviations -- 14.4 Ontogenetic and Evolutionary Variations of Body Chamber Length -- 14.5 Muscle and Mantle Attachment Marks, and their Interpretation -- 14.5.1 Dorsal Marks -- 14.5.2 Umbilical Marks -- 14.5.3 Lateral Marks -- 14.5.4 Ventrolateral Marks -- 14.5.5 Ventral Marks -- 14.5.6 Pore Canals and Assumed Porous Apertural Band -- 14.5.7 Myoadhesive Elevation -- 14.5.8 Septal Attachment -- 14.5.9 Cameral Membranes -- 14.6 Mantle Structure of the Late Triassic Ceratitid Austrotrachyceras -- 14.7 Morphological Indications of Jet-Powered Swimming in Ammonoids -- 14.8 Fossilization of Mantle and Muscle Attachment Marks -- 14.8.1 Mantle Fossilization -- 14.8.2 Fossilization of Mantle and Muscle Attachment Marks -- 14.9 Conclusions -- Appendix 1 -- Apendix 2 -- References -- Chapter-15 -- The Additional External Shell Layers Indicative of "Endocochleate Experiments" in Some Ammonoids -- 15.1 Introduction -- 15.2 Standard Shell Wall Structure of Ammonoids -- 15.3 Aberrant Shell Wall Structures with Extra Layers -- 15.3.1 Extra Layers of the Cretaceous Gaudryceras tenuiliratum -- 15.3.2 Extra Layers of the Jurassic Indosphinctes (Elatmites) submutatus -- 15.3.3 Extra Layers of the Cretaceous Aconeceras trautscholdi -- 15.3.4 Aberrant Shell Wall Structure of the Cretaceous Heteromorph Ptychoceras -- 15.4 Helicolateral Deposits of the Carboniferous Clystoceras globosum -- 15.5 Umbilical Membrane of the Devonian Prolobites. , 15.6 Wrinkle Layer on the Outer Shell Surface.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Paleontology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (615 pages)
    Edition: 1st ed.
    ISBN: 9789401796330
    Series Statement: Topics in Geobiology Series ; v.44
    DDC: 564.53
    Language: English
    Note: Intro -- Foreword to the First Edition: Ammonoids Do It All -- Foreword to the New Edition -- Preface -- Contents -- Contributors -- Part I -- Macroevolution -- Chapter-1 -- Ancestry, Origin and Early Evolution of Ammonoids -- 1.1 Introduction -- 1.2 Phylogenetic Position of the Ammonoids in the Cephalopod Tree -- 1.2.1 The Cephalopod Bauplan -- 1.2.2 Position of the Bactritida and Ammonoidea -- 1.3 Origin of the Ammonoidea -- 1.3.1 Ammonoid Bauplan and the HASC -- 1.3.2 Early Evolution of Ammonoids -- 1.3.2.1 Morphological Changes -- 1.3.2.2 Potential Consequences for the Mode of Life -- References -- Chapter-2 -- Evolutionary Trends of Triassic Ammonoids -- 2.1 Introduction -- 2.2 Adult Size -- 2.3 Taxonomic Diversity -- 2.4 Morphological Disparity -- 2.4.1 Shell Geometry -- 2.4.2 Ornamentation -- 2.4.3 Suture Line -- 2.5 Conclusions -- References -- Chapter-3 -- Evolutionary Trends within Jurassic Ammonoids -- 3.1 Introduction -- 3.2 The Jurassic System -- 3.3 A Review of Macroevolutionary Patterns and Evolutionary Trends within Jurassic Ammonoids -- 3.4 Global Diversity Pattern -- 3.5 Conclusions and Prospects -- References -- Chapter-4 -- Buckman's Rules of Covariation -- 4.1 Introduction -- 4.2 Rules of Covariation -- 4.2.1 First Rule-The More Evolute, The More Depressed, The More Ornamented -- 4.2.2 Second Rule-The More Compressed, The More Frilled -- 4.3 Impact of These Rules on Ammonoid Systematics -- 4.4 Causes of Covariation -- 4.4.1 Adaptive and Environmental Constraints -- 4.4.2 Constructional and Developmental Constraints -- 4.5 Extent of Buckman's Rules of Covariation -- 4.6 Conclusions -- References -- Chapter-5 -- Evolutionary Patterns Of Ammonoids: Phenotypic Trends, Convergence, and Parallel Evolution -- 5.1 Introduction -- 5.2 Macroevolutionary Trends -- 5.2.1 Definition -- 5.2.2 Phenotypic Trends in Ammonoid Shell Characters. , 5.3 Univariate Phenotypic Trends in Ammonoids -- 5.3.1 Classic Descriptive Stratophenetics -- 5.3.2 Passive and Driven Trends and Lineage Sorting -- 5.3.3 Random Walks and Univariate Phenotypic Trajectory Analysis -- 5.4 Multivariate Phenotypic Trends in Ammonoids -- 5.5 Discussion -- 5.5.1 Adaptation (Functional Constraints) -- 5.5.2 Iterative Evolution and Evolutionary Jumps -- 5.5.3 Covariation (Constructional Constraints) -- 5.5.4 Developmental Constraints and Heterochrony -- 5.5.5 Prospects on Long-Term Phenotypic Trends -- 5.6 Conclusions -- References -- Part II -- Paleobiogeography of Ammonoids -- Chapter-6 -- Biogeography of Paleozoic Ammonoids -- 6.1 Introduction -- 6.2 Emsian Ammonoid Biogeography -- 6.3 Late Famennian Biogeography -- 6.4 Late Viséan and Serpukhovian Biogeography -- 6.5 Early Permian Biogeography -- 6.5.1 Cluster Analysis -- 6.5.2 Cladistic Analysis -- 6.5.3 Morphospace Analysis -- References -- Chapter-7 -- Biogeography of Triassic Ammonoids -- 7.1 Introduction -- 7.2 What's New in Triassic Ammonoid Macroecological and Biogeographical Analyses? -- 7.2.1 Classical Analyses and Explored Patterns -- 7.2.2 Recent Analytical Advances -- 7.2.2.1 "Overall" Diversity Estimators -- 7.2.2.2 Rarefaction and Extrapolation Curves -- 7.2.2.3 Endemicity -- 7.2.2.4 Biogeographic Relationships: A Network-Based Approach -- 7.3 Exploring Revised Data: Refining Patterns and Underlying Processes -- 7.3.1 Early Triassic -- 7.3.2 Middle Triassic -- 7.3.3 Late Triassic -- 7.4 What's on the Horizon? -- References -- Chapter-8 -- Macroevolution and Paleobiogeography of Jurassic-Cretaceous Ammonoids -- 8.1 Introduction -- 8.2 Phylogeny of Jurassic and Cretaceous Ammonoids -- 8.2.1 Major Ammonoid Clades -- 8.2.2 Biodiversity Through Time -- 8.2.3 Phylogenetic Analyses -- 8.3 Macroevolutionary Processes -- 8.3.1 Homeomorphy and Iterative Evolution. , 8.3.2 Heterochrony -- 8.3.3 Developmental Flexibility -- 8.3.4 Environment and Evolution -- 8.3.5 Speciation Models -- 8.4 Role of Paleobiogeography in Macroevolution -- 8.4.1 The Mesozoic Earth System -- 8.4.2 Ammonoid Paleobiogeography -- 8.5 A Synthetic View of Macroevolution and Paleobiogeography -- 8.5.1 A Synthetic Model for Ammonoid Speciation -- 8.5.2 New Directions in Studying Ammonoid Macroevolution -- References -- Chapter-9 -- Paleobiogeography of Early Cretaceous Ammonoids -- 9.1 Introduction -- 9.2 Early Cretaceous Paleobiogeography -- 9.2.1 Berriasian -- 9.2.2 Valanginian -- 9.2.3 Hauterivian -- 9.2.4 Barremian -- 9.2.5 Aptian -- 9.2.6 Albian -- 9.3 Conclusion and Future Perspectives -- References -- Chapter-10 -- Paleobiogeography of Late Cretaceous Ammonoids -- 10.1 Introduction -- 10.2 Late Cretaceous Paleobiogeography -- 10.2.1 Cenomanian -- 10.2.2 Turonian -- 10.2.3 Coniacian-Santonian -- 10.2.4 Campanian -- 10.2.5 Maastrichtian -- 10.2.6 The Extinction of the Ammonoidea -- Conclusions -- References -- Part III -- Ammonoids Through Time -- Chapter-11 -- Ammonoids and Quantitative Biochronology-A Unitary Association Perspective -- 11.1 Introduction -- 11.2 Quantitative Biochronological Methods -- 11.3 The Unitary Associations -- 11.3.1 History and Properties -- 11.3.2 Major Principles and Steps of UAs -- 11.3.3 UA Tools and Interface -- 11.4 Example Applications -- 11.4.1 Early Triassic Ammonoids -- 11.4.2 Middle Triassic Ammonoids -- 11.4.3 Late Cretaceous Ammonoids -- 11.5 Conclusions -- References -- Chapter-12 -- Paleozoic Ammonoid Biostratigraphy -- 12.1 Introduction -- 12.2 Devonian Ammonoid Biostratigraphy -- 12.2.1 Early and Middle Devonian -- 12.2.2 Frasnian -- 12.2.3 Famennian -- 12.3 Carboniferous Ammonoid Biostratigraphy -- 12.3.1 Tournaisian -- 12.3.2 Viséan -- 12.3.3 Serpukhovian, Bashkirian. , 12.3.4 Moscovian to Ghzelian -- 12.4 Permian Ammonoid Biostratigraphy -- References -- Chapter-13 -- Biostratigraphy of Triassic Ammonoids -- 13.1 Introduction -- 13.2 Historical Overview of Triassic Ammonoid Biostratigraphy -- 13.2.1 The Nineteenth Century European Biostratigraphic Scales -- 13.2.2 The Twentieth Century North American Biostratigraphic Scales -- 13.2.3 The Twenty first Century and Modern Revision of Biostratigraphic Scales -- 13.2.3.1 South China and the North Indian Margin -- 13.2.3.2 Russia -- 13.2.3.3 Modern Revision of North American Timescales -- 13.2.3.4 Modern Revision of European Timescales -- 13.3 Early Triassic Ammonoid Zonation -- 13.3.1 Induan -- 13.3.2 Olenekian -- 13.4 Middle Triassic Ammonoid Zonation -- 13.4.1 Anisian -- 13.4.2 Ladinian -- 13.5 Late Triassic Ammonoid Zonation -- 13.5.1 Carnian -- 13.5.2 Norian -- 13.5.3 Rhaetian -- 13.6 Conclusions -- References -- Chapter-14 -- Ammonoid Biostratigraphy in the Jurassic -- 14.1 Introduction -- 14.2 Early Jurassic -- 14.3 Middle Jurassic -- 14.4 Late Jurassic -- References -- Chapter-15 -- Ammonite Biostratigraphy of the Cretaceous-An Overview -- 15.1 Introduction -- 15.2 Biostratigraphy and Time -- 15.2.1 Concepts of Biostratigraphy -- 15.2.2 Examples of Cretaceous Biozones -- 15.2.3 First and Last Occurrences -- 15.2.4 Ammonite Events -- 15.2.5 Biostratigraphy and Geochronology -- 15.2.6 Zonation Used in the GTS 2012 -- 15.3 Accomplishments and Limits of Ammonite Biostratigraphy -- 15.3.1 Biostratigraphic Potential of Index Species -- 15.3.2 Preservation as Limiting Factor for Biostratigraphy -- 15.3.3 Impact of Taxonomic Difficulties on Biostratigraphy -- 15.3.4 Other Cretaceous Index Macrofossils -- References -- Chapter-16 -- Taxonomic Diversity and Morphological Disparity of Paleozoic Ammonoids -- 16.1 Introduction -- 16.2 Diversity Dynamics of Paleozoic Ammonoids. , 16.2.1 Devonian -- 16.2.2 Carboniferous -- 16.2.3 Permian -- 16.3 Morphometric Evolution of Paleozoic Ammonoids -- 16.3.1 Origin of the Ammonoidea and early diversification -- 16.3.2 Conch Morphology of Devonian Ammonoids -- 16.3.3 Devonian Extinction Events -- 16.3.4 Kellwasser Crisis and Recovery -- 16.3.5 Hangenberg Event and its Aftermath -- 16.3.6 The Basal Carboniferous Recovery -- 16.3.7 Conch Morphology of Carboniferous Ammonoids -- 16.3.8 Permian Extinction Events -- 16.4 Ammonoid Morphospace Over the Paleozoic and Triassic -- 16.5 Conclusions -- References -- Chapter-17 -- Permian-Triassic Extinctions and Rediversifications -- 17.1 Introduction -- 17.2 Late Permian Events -- 17.3 Early Triassic Events -- References -- Chapter-18 -- Ammonoids at the Triassic-Jurassic Transition: Pulling Back from the Edge of Extinction -- 18.1 Introduction -- 18.2 Taxonomic Turnover -- 18.3 Changes in Morphospace Occupation -- 18.4 Siphuncle Offset and Septal Face Asymmetry -- 18.5 Discussion and Conclusions -- References -- Chapter-19 -- Ammonites on the Brink of Extinction: Diversity, Abundance, and Ecology of the Order Ammonoidea at the Cretaceous/Paleogene (K/Pg) Boundary -- 19.1 Introduction -- 19.2 Methods -- 19.3 Results -- 19.3.1 Atlantic Coastal Plain of North America -- 19.3.2 Gulf Coastal Plain of North America -- 19.3.3 La Popa Basin, Northeastern Mexico -- 19.3.4 Denmark -- 19.3.5 Maastrichtian Type Area -- 19.3.6 Poland -- 19.3.7 Kyzylsay, Kazakhstan -- 19.3.8 Sumbar River, Turkmenistan -- 19.3.9 Bay of Biscay -- 19.3.10 Bjala (= Byala), Bulgaria -- 19.3.11 Tunisia and Egypt -- 19.3.12 Naiba River Valley, Sakhalin, Far East Russia -- 19.3.13 South America -- 19.3.14 Seymour Island, Antarctica -- 19.4 Discussion -- 19.4.1 Ammonite Diversity at the K/Pg Boundary -- 19.4.2 Depth Distribution of Ammonites at the K/Pg Boundary. , 19.4.3 Ecology of Ammonites at the K/Pg Boundary.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Paleontology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (571 pages)
    Edition: 1st ed.
    ISBN: 9783030424848
    Series Statement: Topics in Geobiology Series ; v.49
    DDC: 571.999
    Language: English
    Note: Intro -- Foreword -- Preface -- Contents -- Chapter 1: Parasites of Fossil Vertebrates: What We Know and What Can We Expect from the Fossil Record? -- 1.1 Introduction -- 1.1.1 Cestodes (Tapeworms) -- 1.1.2 Trematodes (Flukes) -- 1.1.3 Nematodes (Roundworms) -- 1.1.4 Acanthocephalans (Thorny-Headed Worms) -- 1.1.5 Monogeneans -- 1.1.6 Parasitic Copepods -- 1.1.7 Parasitic Isopods -- 1.1.8 Pentastomids (Tongue Worms) -- 1.1.9 Ticks -- 1.1.10 Ectoparasitic Insects (Fleas and Lice) -- 1.2 A Note of Caution Regarding Fossil Parasites -- 1.3 Framework for Inferring Parasite Communities of Extinct Vertebrate Groups -- 1.4 Future Research Directions and Further Questions -- References -- Chapter 2: Fossil Record of Viruses, Parasitic Bacteria and Parasitic Protozoa -- 2.1 Introduction -- 2.2 Virus Fossils -- 2.2.1 Direct Evidence of Fossil Viral Infections -- 2.2.2 Indirect Evidence of Virus Infections -- 2.2.2.1 Parasitic Wasps with Polydnaviruses -- 2.2.2.2 Tumors in Lepidoptera -- 2.2.2.3 Iridoviridae -- 2.3 Fossil Pathogenic Bacteria -- 2.3.1 Direct Evidence of Fossil Pathogenic Bacteria -- 2.3.2 Indirect Evidence of Fossil Symbiotic-Pathogenic Bacteria -- 2.4 Protozoan Fossils -- 2.4.1 Direct Evidence of Fossil Protozoan Parasites -- 2.4.1.1 Fossil Trypanosome Parasites -- 2.4.1.2 Fossil Malaria Parasites -- 2.4.1.3 Other Fossil Records of Protozoan Parasites -- Fossil Piroplasmid Parasites -- Fossil Gregarine Parasites -- 2.4.2 Indirect Evidence of Fossil Protozoan Parasites -- 2.4.2.1 Fossil Parasites in Coprolites -- 2.5 Conclusions -- References -- Chapter 3: Fungi as Parasites: A Conspectus of the Fossil Record -- 3.1 Introduction -- 3.2 Identifying Fungal Parasitism in the Fossil Record -- 3.2.1 Finding Fossil Fungi -- 3.2.2 Tracing Fungal Parasitism in the Fossil Record -- 3.3 Fossils of Fungi as Parasites. , 3.3.1 Fungal Parasites of Land Plants -- 3.3.1.1 Early Land Plants -- 3.3.1.2 Plant Structural Alterations in Response to Fungal Intrusion -- 3.3.1.3 Host Responses in Woody Plants -- 3.3.1.4 Host Plant Preservation and Fungal Distribution -- 3.3.1.5 Epiphyllous Fungi -- 3.3.1.6 Dispersed Remains and Plant Pathogens -- 3.3.2 Fungal Parasites of Algae -- 3.3.3 Fungal Parasites of Other Fungi -- 3.3.3.1 Rhynie Chert Interfungal Interactions -- 3.3.3.2 Fossil Fungal "Sporocarps" -- 3.3.3.3 Hyperparasitism -- 3.3.4 Fungal Parasites of Animals -- 3.3.4.1 Rhynie Chert -- 3.3.4.2 Amber Inclusions -- 3.3.4.3 Cordycipitaceae Interactions with Arthropods -- 3.3.4.4 Dinosaurs -- 3.4 Concluding Remarks -- References -- Chapter 4: Evolution, Origins and Diversification of Parasitic Cnidarians -- 4.1 Introduction -- 4.2 Parasitic Cnidarians Other than Endocnidozoans -- 4.3 The Endocnidozoa -- 4.3.1 General Biology -- 4.3.2 Comparative Development and Body Plans -- 4.4 Evolution and Life Cycles of Endocnidozoans -- 4.4.1 Preadaptations to Parasitism -- 4.4.2 Life Cycle Speculations -- 4.5 Origins and Fossil Records of Endocnidozoa and Their Recognised Major Host Groups -- 4.5.1 Cnidarian Origins and Fossil Record -- 4.5.2 Vertebrate Origins and Fossil Record -- 4.5.3 Lophotrochozoan Origins and Fossil Record -- 4.5.4 Annelid Origins and Fossil Record -- 4.5.5 Bryozoan Origins and Fossil Record -- 4.5.6 Other Potential Ancient Invertebrate Hosts -- 4.5.7 Summary of Origins and Ancient Hosts -- 4.6 Inferring Endocnidozoan Origins and Acquisition of Early Hosts -- 4.6.1 The Process of Host Acquisition -- 4.6.2 Molecular Clock and Cophylogenetic Investigations -- 4.6.2.1 Some General Pitfalls -- 4.6.2.2 Endocnidozoan Origins and Host Use Over Time -- 4.6.2.3 The Endocnidozoa -- 4.6.3 Scenarios of Endocnidozoan Evolution and Recommendations for Future Study. , 4.7 Adaptation and Diversification of Endocnidozoans -- 4.7.1 Adaptations to a Parasitic Life Style -- 4.7.2 Patterns of Diversification -- 4.8 Conclusions -- References -- Chapter 5: Evolutionary History of Bivalves as Parasites -- 5.1 Introduction -- 5.1.1 Bivalves in Relations with Other Organisms -- 5.1.2 Galeommatoidea -- 5.1.3 Unionida -- 5.2 Functional Anatomy of Adult Mussels and the Larvae -- 5.2.1 Adults -- 5.2.2 Larvae -- 5.3 Life History, with the Review of the Adaptations to Attracting the Host -- 5.3.1 Life History -- 5.3.2 Adaptations to Host Infection -- 5.4 Phylogeny of the Unionida -- 5.4.1 Origin of Unionida -- 5.4.2 Classification and Diversity -- 5.4.3 Phylogeny -- 5.5 Evolution of Parasitism -- 5.5.1 Parental Care -- 5.5.2 Parasitic Larvae -- 5.5.3 Origin and Evolution of Unionoid Parasitism -- 5.5.3.1 Phoresis -- 5.5.3.2 Encapsulation -- 5.5.3.3 Suitable Host -- 5.5.3.4 Duration of Encapsulation and Metamorphosis -- 5.5.3.5 In Search of the Host of Early Unionids -- 5.6 Conclusions -- References -- Chapter 6: Gastropods as Parasites and Carnivorous Grazers: A Major Guild in Marine Ecosystems -- 6.1 Introduction -- 6.2 How to Infer Parasitism in Fossil Gastropods -- 6.2.1 Direct Observations -- 6.2.2 Taxonomic Uniformitarianism -- 6.2.2.1 Eulimidae -- 6.2.2.2 Epitoniidae -- 6.2.2.3 Coralliophilinae (Muricidae) -- 6.2.2.4 Pyramidellidae -- 6.2.2.5 Architectonicidae and Mathildidae -- 6.2.2.6 Triphoridae and Cerithiopsidae: Carnivorous Grazers (Sponge Feeders) -- Triphoridae -- Cerithiopsidae -- 6.2.2.7 Ovulidae -- 6.2.3 Functional Shell Morphology -- 6.2.4 Analogy Based on Associated Phenomena -- 6.3 Conclusions -- References -- Chapter 7: Fossil Constraints on the Timescale of Parasitic Helminth Evolution -- 7.1 Introduction -- 7.2 Phylogenetic Affinities and Distribution of Parasitic "Helminths" -- 7.3 Preservation Potential. , 7.4 Time Constraints on the Origin of Eumetazoan Helminths -- 7.4.1 Fossil Record of Parasitic Annelids -- 7.4.2 Fossil Record of Parasitic Pentastomids -- 7.4.3 Fossil Record of Parasitic Platyhelminths -- 7.4.4 Fossil Record of Parasitic Nematodes -- 7.4.5 Fossil Record of Nematomorphs -- 7.4.6 Fossil Record of Syndermata -- 7.5 Discussion -- 7.6 Conclusions -- References -- Chapter 8: Thorny-Headed Worms (Acanthocephala): Jaw-Less Members of Jaw-Bearing Worms That Parasitize Jawed Arthropods and Jawed Vertebrates -- 8.1 Introduction -- 8.2 Acanthocephalans in Hominoids and Potential Reservoirs for Human Infections -- 8.3 Solid-Parts and Their Preservation Potential -- 8.3.1 Acanthocephalan Propagules: Eggs in Space and Time -- 8.3.2 Hooks -- 8.3.3 Copulatory Cap -- 8.4 Soft Tissue, Functional Morphology and the Ideal Fossil -- 8.4.1 Outer Contour and Tegument -- 8.4.2 Presomal Musculature and Anchoring -- 8.4.3 Presomal Sensory Organs -- 8.4.4 Lack of an Intestinal Tract -- 8.5 Pathological Manifestations of Infections with Acanthocephalans -- 8.6 Phylogenetic Relationships of Acanthocephala and Taxonomic Implications -- 8.7 Evolution of Acanthocephalan Endoparasitism: A Conditional Hypothesis -- 8.8 Acanthocephala and Gnathifera: Fossil Report and Time Line -- 8.9 Cambroclavida: Microfossils of Questionable Acanthocephalan Affiliation -- 8.10 Conclusions -- References -- Chapter 9: Chelicerates as Parasites -- 9.1 Introduction -- 9.1.1 The Chelicerate Fossil Record -- 9.2 Sea Spiders -- 9.2.1 Cambropycnogon -- 9.3 Horseshoe Crabs and Eurypterids -- 9.4 Arachnids -- 9.4.1 Acariform Mites -- 9.4.1.1 Trombidiform Mites -- 9.4.1.2 Sarcoptiform Mites -- 9.4.2 Parasitiform Mites -- 9.4.2.1 Opilioacarids -- 9.4.2.2 Holothyrids -- 9.4.2.3 Ticks (Ixodida) -- 9.4.2.4 Mesostigmatids -- 9.5 The Origins of Parasitic Behaviour -- 9.5.1 Nest Associates. , 9.5.2 From Phoresy to Parasitism -- 9.5.2.1 Phoresy in the Fossil Record -- 9.6 Chelicerates as Victims -- 9.6.1 Arachnid Parasites and Parasitoids -- References -- Chapter 10: Evolutionary History of Crustaceans as Parasites -- 10.1 Introduction -- 10.2 Amphipoda -- 10.2.1 General Aspects -- 10.2.2 Phylogenetic Inference of Appearance and Molecular Estimations of Early Evolution -- 10.2.3 Fossil Representatives -- 10.3 Isopoda -- 10.3.1 General Aspects -- 10.3.2 Phylogenetic Inference of Appearance and Molecular Estimations of Early Evolution -- 10.3.3 Fossil Representatives -- 10.4 Copepoda -- 10.4.1 General Aspects -- 10.4.2 Phylogenetic Inference of Appearance and Molecular Estimations of Early Evolution -- 10.4.3 Fossil Representatives -- 10.5 Thecostraca -- 10.5.1 General Aspects -- 10.5.2 Phylogenetic Inference of Appearance and Molecular Estimations of Early Evolution -- 10.5.3 Fossil Representatives -- 10.6 Branchiura -- 10.6.1 General Aspects -- 10.6.2 Phylogenetic Inference of Appearance and Molecular Estimations of Early Evolution -- 10.6.3 Fossil Representatives -- 10.7 Pentastomida -- 10.7.1 General Aspects -- 10.7.2 Phylogenetic Inference of Appearance and Molecular Estimations of Early Evolution -- 10.7.3 Fossil Representatives -- 10.8 Conclusion and Outlook -- References -- Chapter 11: The History of Insect Parasitism and the Mid-Mesozoic Parasitoid Revolution -- 11.1 Introduction -- 11.2 Defining the Insect Consumption of Animals -- 11.2.1 Predation -- 11.2.2 Parasitism -- 11.2.3 Parasitoidism -- 11.2.4 Parasitoidism: A History of the Term -- 11.2.5 Types of Parasitoidism -- 11.2.5.1 Ectoparasitoidism Versus Endoparasitoidism -- 11.2.5.2 Koinobiont Parasitoidism Versus Idiobiont Parasitoidism -- 11.2.5.3 Solitary Versus Gregarious Parasitoidism -- 11.2.5.4 Superparasitoidism Versus Multiparasitoidism -- 11.2.5.5 Hyperparasitoidism. , 11.2.5.6 Egg Parasitoidism, Larval Parasitoidism, Pupal Parasitoidism and Adult Parasitoidism.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Parasitology. ; Parasites--Evolution. ; Invertebrates, Fossil. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (462 pages)
    Edition: 1st ed.
    ISBN: 9780128040270
    Series Statement: Issn Series ; v.Volume 90
    DDC: 616.96
    Language: English
    Note: Front Cover -- SERIES EDITOR -- EDITORIAL BOARD -- Fossil Parasites -- Copyright -- CONTENTS -- CONTRIBUTORS -- PREFACE -- One - The Importance of Fossils in Understanding the Evolution of Parasites and Their Vectors -- 1. INTRODUCTION -- 2. TECHNIQUES FOR ANCIENT PARASITE DISCOVERY -- 2.1 Thin sections and computed tomography -- 2.2 Ancient biomolecules -- 2.2.1 Ancient DNA -- 2.2.2 Palaeoproteomics -- 3. THE PARASITE FOSSIL RECORD -- 3.1 Body fossils -- 3.2 Trace fossils and pathologies -- 3.3 Coprolites -- 4. MOLECULAR PERSPECTIVES ON PARASITE PHYLOGENY AND EVOLUTION -- 4.1 Molecular clocks -- 4.2 HGT and 'parasitic DNA' -- 5. FUTURE PERSPECTIVES -- ACKNOWLEDGEMENTS -- REFERENCES -- Two - The Geological Record of Parasitic Nematode Evolution -- 1. INTRODUCTION -- 2. MEDIA FOR THE STUDY OF FOSSIL NEMATODES -- 2.1 Amber -- 2.2 Rock fossils -- 2.3 Coprolites -- 3. PALAEOZOIC PARASITIC NEMATODES -- 4. PARASITIC NEMATODE BODY FOSSILS FROM THE MESOZOIC -- 5. NEMATODE PARASITES FROM THE EARLY CENOZOIC -- 5.1 Baltic amber -- 6. NEMATODE PARASITES FROM THE OLIGOCENE-MIOCENE -- 6.1 Dominican amber nematodes -- 6.2 Mexican amber nematodes -- 7. NEMATODE PARASITES FROM THE PLIOCENE -- 8. NEMATODE PARASITES FROM THE PLEISTOCENE AND HOLOCENE -- 8.1 Nematode parasites of humans from the Pleistocene and Holocene -- 9. STAGES IN THE EVOLUTION OF NEMATODE PARASITES OF INVERTEBRATES -- 10. ORIGIN OF NEMATODE PARASITES OF VERTEBRATES -- 11. ORIGIN OF NEMATODE PARASITES OF PLANTS -- 12. SUMMARY -- ACKNOWLEDGEMENTS -- REFERENCES -- Three - Constraining the Deep Origin of Parasitic Flatworms and Host-Interactions with Fossil Evidence -- 1. INTRODUCTION -- 2. ASSESSMENT OF THE FLATWORM FOSSIL RECORD -- 2.1 Devonian fossil hook circlets -- 2.2 Silurian blister pearls and calcareous concretions in bivalve shells. , 2.3 Permo-Carboniferous egg remains in shark coprolites -- 2.4 Cretaceous egg remains in terrestrial archosaur coprolites -- 2.5 Eocene shell pits in intermediate bivalve hosts -- 2.6 Eggs remains in a Pleistocene mammal coprolite -- 2.7 Holocene evidence for parasitic flatworms from ancient remains -- 2.8 Free-living flatworms -- 3. INTERPOLATING OR EXTRAPOLATING EXTANT PARASITE-HOST RELATIONSHIPS AND THE ASSUMPTION OF PARASITE-HOST COEVOLUTION -- 4. MOLECULAR CLOCK STUDIES -- 5. CONCLUSIONS AND FUTURE PROSPECTS -- ACKNOWLEDGEMENTS -- REFERENCES -- Four - From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts -- 1. INTRODUCTION -- 1.1 Insects as parasites and hosts -- 1.2 Insects in the fossil record -- 2. INSECT PARASITISM SENSU STRICTO (S. STR.) - PARANEOPTERA -- 2.1 Phthiraptera -- 2.1.1 General aspects -- 2.1.2 Phylogenetic inference of appearance and molecular estimations of early evolution -- 2.1.3 Fossil representatives -- 2.2 Hemiptera -- 2.2.1 General aspects -- 2.2.2 Phylogenetic inference of appearance and molecular estimations of early evolution -- 2.2.3 Fossil representatives -- 3. INSECT PARASITISM S.STR. - ANTLIOPHORA -- 3.1 Siphonaptera -- 3.1.1 General aspects -- 3.1.2 Phylogenetic inference of appearance and molecular estimations of early evolution -- 3.1.3 Fossil representatives -- 3.2 Diptera -- 3.2.1 General aspects -- 3.2.2 Phylogenetic inference of appearance and molecular estimations of early evolution -- 3.2.3 Fossil representatives -- 4. INSECT PARASITISM S.STR. - NEUROPTEROIDA -- 4.1 Neuroptera (Mantispidae) -- 4.1.1 General aspects -- 4.1.2 Phylogenetic inference of appearance and molecular estimations of early evolution -- 4.1.3 Fossil representatives -- 4.2 Coleopterida (Coleoptera, Meloidae) -- 4.2.1 General aspects -- 4.2.2 Phylogenetic inference of appearance and molecular estimations of early evolution. , 4.2.3 Fossil representatives -- 5. PARASITOIDS -- 5.1 Hymenoptera -- 5.1.1 General aspects -- 5.1.2 Phylogenetic inference of appearance and molecular estimations of early evolution -- 5.1.3 Fossil representatives -- 5.2 Strepsiptera -- 5.2.1 General aspects -- 5.2.2 Phylogenetic inference of appearance and molecular estimations of early evolution -- 5.2.3 Fossil representatives -- 6. PLANT PARASITISM (VERSUS PHYTOPHAGY) -- 6.1 General aspects -- 6.2 Phylogenetic inference of appearance and molecular estimations of early evolution -- 6.3 Fossil representatives -- 7. INSECTS AS HOSTS -- 7.1 Nematoida -- 7.1.1 General aspects -- 7.1.2 Phylogenetic inference of appearance and molecular estimations of early evolution -- 7.1.3 Fossil representatives -- 7.2 Mites -- 7.2.1 General aspects -- 7.2.2 Phylogenetic inference of appearance and molecular estimations of early evolution -- 7.2.3 Fossil representatives -- 7.3 Pseudoscorpions -- 7.3.1 General aspects -- 7.3.2 Phylogenetic inference of appearance and molecular estimations of early evolution -- 7.3.3 Fossil representatives -- 8. INSECTS AS VECTORS -- 8.1 General aspects -- 8.2 Phylogenetic inference of appearance and molecular estimations of early evolution -- 8.3 Fossil representatives -- 9. CONCLUSION -- 10. OUTLOOK -- ACKNOWLEDGEMENTS -- REFERENCES -- Five - Trace Fossil Evidence of Trematode-Bivalve Parasite-Host Interactions in Deep Time -- 1. INTRODUCTION -- 2. TREMATODE-INDUCED SHELL MALFORMATIONS IN LIVING BIVALVE MOLLUSCS -- 3. OCCURRENCES OF TREMATODE-INDUCED PITS IN FOSSIL AND SUBFOSSIL BIVALVES -- 3.1 Taxonomic, temporal and ecological occurrences -- 3.2 Taphonomy and the origin of the trematode-bivalve parasite-host interaction -- 3.3 Trematode-induced malformations as palaeoenvironmental indicators. , 4. DETRIMENTAL EFFECTS OF TREMATODES ON LIVING BIVALVES AND THEIR POTENTIAL EVOLUTIONARY IMPLICATIONS -- 5. CONCLUDING REMARKS -- ACKNOWLEDGEMENTS -- REFERENCES -- Six - Fossil Crustaceans as Parasites and Hosts -- 1. INTRODUCTION -- 2. CRUSTACEANS AS HOSTS OF PARASITES -- 2.1 Fossil evidence -- 2.1.1 Isopod parasites in decapod crustaceans -- 2.1.1.1 Modern evidence -- 2.1.1.2 Life cycle and parasitism -- 2.1.1.3 Fossil record -- 2.1.1.4 Quantitative data per fauna -- 2.1.1.5 Infestation patterns through time -- 2.1.1.6 Age -- 2.1.1.7 Biogeography -- 2.1.1.8 On the erection of an ichnotaxon -- 2.1.2 Rhizocephalan barnacles in decapod crustaceans -- 2.1.3 Platyhelminthes in crustaceans -- 2.2 Equivocal fossil evidence -- 2.2.1 Ciliates on ostracods -- 2.3 Modern evidence only -- 2.3.1 Non-crustacean parasites -- 2.3.2 Crustacean parasites -- 3. CRUSTACEANS AS PARASITES OF NON-CRUSTACEAN HOSTS -- 3.1 Fossil evidence -- 3.1.1 Ascothoracidan barnacles in invertebrates -- 3.1.2 Copepods in echinoderms -- 3.1.3 Copepods in fish -- 3.1.4 Gall crabs (Cryptochiridae) in corals -- 3.1.5 Pentastomida -- 3.2 Equivocal fossil evidence -- 3.2.1 Barnacle borings attributed to Acrothoracica in marine invertebrates -- 3.2.2 Barnacles (Pyrgomatidae) in corals -- 3.2.3 Isopods (Cymothooidea) in fishes and squids -- 3.2.4 Crabs (Trapeziidae) and corals -- 3.3 Modern evidence only -- 3.3.1 Copepods -- 3.3.2 Tantulocarida -- 3.3.3 Branchiura -- 3.3.4 Ostracoda -- 3.3.5 Facetotecta -- 3.3.6 Thoracica -- 3.3.7 Malacostraca -- 4. OVERVIEW FOSSIL EVIDENCE AND FUTURE RESEARCH -- ACKNOWLEDGEMENTS -- REFERENCES -- Seven - A Prejudiced Review of Ancient Parasites and Their Host Echinoderms: CSI Fossil Record or Just an Excuse fo ... -- 1. INTRODUCTION -- 2. INTERPRETATIONS AND CONFIDENCE -- 2.1 Problems of interpretation -- 2.2 Limits of confidence -- 3. SOME EXAMPLES. , 3.1 A coral-crinoid association from the Mississippian (Figure 2) -- 3.2 A growth deformity in a Mississippian crinoid (Figures 2(d-f) and 3) -- 3.3 Epizoobionts infesting a Mississippian crinoid (Figure 4) -- 3.4 Platyceratid gastropods infesting Upper Palaeozoic crinoids (Figures 5 and 6) -- 3.5 Site selectivity of pits in echinoid tests, Upper Cretaceous (Figure 6) -- 4. DISCUSSION -- 5. CONCLUSIONS -- ACKNOWLEDGEMENTS -- REFERENCES -- Eight - Differentiating Parasitism and Other Interactions in Fossilized Colonial Organisms -- 1. INTRODUCTION -- 2. COLONIAL ANIMALS -- 3. PUTATIVE PARASITES OF FOSSIL COLONIAL ANIMALS -- 3.1 Recognition of parasitism in fossils -- 3.2 Symbiotic intergrowths and bioclaustrations -- 3.2.1 Caunopores -- 3.2.2 Rugose corals and stromatoporoids -- 3.2.3 Chaetosalpinx and other bioclaustrations -- 3.2.4 Cornulitids and colonial hosts -- 3.2.5 Celleporaria and Culicia -- 3.2.6 Pyrgomatid barnacles -- 3.3 Galls -- 3.4 Borings -- 3.5 Supposed parasites of graptolites -- 4. FOSSIL COLONIAL ANIMALS AS PARASITES -- 5. DISCUSSION -- ACKNOWLEDGEMENTS -- REFERENCES -- Nine - Palaeoparasitology - Human Parasites in Ancient Material -- 1. INTRODUCTION - PARASITISM -- 2. HUMANS AND PARASITES -- 3. PALAEOPARASITOLOGY -- 4. RECOMMENDED MATERIAL AND TECHNIQUES FOR MICROSCOPIC EXAMINATION IN PALAEOPARASITOLOGY -- 4.1 Light microscopy techniques -- 4.2 Counting remains under the microscope -- 4.2.1 Analysis of sediments -- 4.2.2 Coprolites in mummies -- 4.3 Molecular techniques applied to palaeoparasitology -- 4.3.1 Molecular diagnosis -- 5. PARASITE FINDS IN HUMAN ARCHAEOLOGICAL REMAINS -- 5.1 Ascaris lumbricoides and Trichuris trichiura -- 5.2 Hookworms -- 5.3 Enterobius vermicularis -- 5.4 Diphyllobothrium sp. -- 6. OTHER PARASITES: PARASITES OF ANIMALS FOUND IN HUMAN COPROLITES -- PARASITES IN PREHISTORIC ASIA. , 7. ORIGIN AND EVOLUTION OF TRYPANOSOMATIDS IN HUMANS AND THE PARADIGM SHIFT FROM RESULTS IN PALAEOPARASITOLOGY.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Geography ; Evolution (Biology) ; Earth Sciences ; Paleontology ; Zoology ; Invertebrates ; Evolutionary biology. ; Geography ; Paleontology ; Evolution (Biology) ; Zoology ; Invertebrates ; Ammoniten ; Paläobiogeografie ; Fossil ; Paläontologie ; Ontogenie ; Systematik ; Ammoniten ; Palökologie ; Ontogenie ; Morphologie
    Description / Table of Contents: Part I. Conch -- Part II. Ontogeny -- Part III. Anatomy -- Part IV. Habit and habitats.
    Type of Medium: Online Resource
    Pages: Online-Ressource (XXV, 934 p. 267 illus., 16 illus. in color, online resource)
    Edition: 1st ed. 2015
    ISBN: 9789401796309
    Series Statement: Topics in geobiology volume 43
    RVK:
    Language: English
    Note: Description based upon print version of record , Part I. ConchPart II. Ontogeny -- Part III. Anatomy -- Part IV. Habit and habitats.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Geography ; Evolution (Biology) ; Earth Sciences ; Paleontology ; Zoology ; Invertebrates ; Evolutionary biology. ; Geography ; Paleontology ; Evolution (Biology) ; Zoology ; Invertebrates
    Description / Table of Contents: Part I. Macroevolution -- Part II. Paleobiogeography of ammonoids -- Part III. Ammonoids through time.
    Type of Medium: Online Resource
    Pages: Online-Ressource (XXI, 605 p. 176 illus., 57 illus. in color, online resource)
    ISBN: 9789401796330
    Series Statement: Topics in Geobiology 44
    Language: English
    Note: Description based upon print version of record , Part I. MacroevolutionPart II. Paleobiogeography of ammonoids -- Part III. Ammonoids through time.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-12-12
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The body size of marine ectotherms is often negatively correlated with ambient water temperature, as seen in many clades during the hyperthermal crisis of the end‐Permian mass extinction (〈italic toggle="no"〉c〈/italic〉. 252 Ma). However, in the case of ostracods, size changes during ancient hyperthermal events are rarely quantified. In this study, we evaluate the body size changes of ostracods in the Aras Valley section (northwest Iran) in response to the drastic warming during the end‐Permian mass extinction at three taxonomic levels: class, order, species. At the assemblage level, the warming triggers a complete species turnover in the Aras Valley section, with larger, newly emerging species dominating the immediate post‐extinction assemblage for a short time. Individual ostracod species and instars do not show dwarfing or a change in body size as an adaptation to the temperature stress during the end‐Permian crisis. This may indicate that the ostracods in the Aras Valley section might have been exceptions to the temperature–size rule (TSR), using an adaptation mechanism that does not involve a decrease in body size. This adaptation might be similar to the accelerated development despite constant instar body sizes that can be observed in some recent experimental studies of ostracod responses to thermal stress.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5061/dryad.xgxd254mb
    Keywords: ddc:565 ; Permian–Triassic ; Ostracoda ; body size ; mass extinction ; Aras Valley section
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...