GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-07
    Description: Volcanic emissions are a critical pathway in Earth's carbon cycle. Here, we show that aerial measurements of volcanic gases using unoccupied aerial systems (UAS) transform our ability to measure and monitor plumes remotely and to constrain global volatile fluxes from volcanoes. Combining multi-scale measurements from ground-based remote sensing, long-range aerial sampling, and satellites, we present comprehensive gas fluxes-3760 ± [600, 310] tons day-1 CO2 and 5150 ± [730, 340] tons day-1 SO2-for a strong yet previously uncharacterized volcanic emitter: Manam, Papua New Guinea. The CO2/ST ratio of 1.07 ± 0.06 suggests a modest slab sediment contribution to the sub-arc mantle. We find that aerial strategies reduce uncertainties associated with ground-based remote sensing of SO2 flux and enable near-real-time measurements of plume chemistry and carbon isotope composition. Our data emphasize the need to account for time averaging of temporal variability in volcanic gas emissions in global flux estimates.
    Description: This research was enabled through the Alfred P. Sloan Foundation's support of the Deep Carbon Observatory Deep Earth Carbon Degassing program (DECADE). Part funding also came from the EPSRC CASCADE programme grant (EP/R009953/1). EJL was supported by a Leverhulme Trust Early Career Fellowship. KW was supported by the National Center for Nuclear Robotics (NCNR) EPSRC grant (EP/R02572X/1).
    Description: Published
    Description: eabb9103
    Description: 7TM.Sviluppo e Trasferimento Tecnologico
    Description: JCR Journal
    Keywords: UAS ; volcanic plume ; carbon cycle ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-12
    Description: Seasonal rainfall in the Caribbean Basin is known to be modulated by sea surface temperature anomalies (SSTAs) in the Atlantic and Pacific Oceans, and particularly those in the Equatorial Pacific and Atlantic and the Tropical North Atlantic. However, little is known about how these major oceans influence the seasonal precipitation of individual small island states within the region as climate variability at the island-scale may di er from the Caribbean as a whole. Correlation and composite analyses were determined using monthly rainfall data for the southernmost island of the Caribbean, Trinidad, and an extended area of global SSTAs. In addition to the subregions that are known to modulate Caribbean rainfall, our analyses show that sea surface temperatures (SSTs) located in the subtropical South Pacific, the South Atlantic, and the Gulf of Mexico also have weak (r2 〈 0.5) yet significant influences on the islands’ early rainy season (ERS) and late rainy season (LRS) precipitation. Composite maps confirm that the South Pacific, South Atlantic, and the Gulf of Mexico show significant SSTAs in December–January–February (DJF) and March–April–May (MAM) prior to the ERS and the LRS. Statistical models for seasonal forecasting of rainfall at the island scale could be improved by using the SSTAs of the Pacific and Atlantic subregions identified in this study.
    Description: Published
    Description: id 707
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...