GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-04-20
    Description: The complexity of coseismic slip distributions influences the tsunami hazard posed by local and, to a certain extent, distant tsunami sources. Large slip concentrated in shallow patches was observed in recent tsunamigenic earthquakes, possibly due to dynamic amplification near the free surface, variable frictional conditions or other factors. We propose a method for incorporating enhanced shallow slip for subduction earthquakes while preventing systematic slip excess at shallow depths over one or more seismic cycles. The method uses the classic k−2 stochastic slip distributions, augmented by shallow slip amplification. It is necessary for deep events with lower slip to occur more often than shallow ones with amplified slip to balance the long-term cumulative slip. We evaluate the impact of this approach on tsunami hazard in the central and eastern Mediterranean Sea adopting a realistic 3D geometry for three subduction zones, by using it to model ~ 150,000 earthquakes with 𝑀𝑤 from 6.0 to 9.0. We combine earthquake rates, depth-dependent slip distributions, tsunami modeling, and epistemic uncertainty through an ensemble modeling technique. We found that the mean hazard curves obtained with our method show enhanced probabilities for larger inundation heights as compared to the curves derived from depth-independent slip distributions. Our approach is completely general and can be applied to any subduction zone in the world.
    Description: Published
    Description: 1497–1520
    Description: 3T. Sorgente sismica
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-07
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: We investigated the kinematic rupture model of the 2018 Mw 6.8 Zakynthos, Ionian Sea (Greece), earthquake by using a non-linear joint inversion of strong motion data, high-rate GPS time series, and static co-seismic GPS displacements. We also tested inversion results against tide-gauge recordings of the small tsunami generated in the Ionian Sea. In order to constrain the fault geometry, we performed several preliminary kinematic inversions by assuming the parameter values resulting from different published moment tensor solutions. The lowest cost function values were obtained by using the geometry derived from the United States Geological Survey (USGS) focal solution. Between the two conjugate USGS planes, the rupture model which better fits the data is the one with the N9° E-striking 39°-ESE-dipping plane. The rupture history of this model is characterized by a bi-lateral propagation, featuring two asperities; a main slip patch extending between 14 and 28 km in depth, 9 km northeast from the nucleation and a slightly shallower small patch located 27 km southwest from the nucleation. The maximum energy release occurs between 8 s and 12 s, when both patches are breaking simultaneously. The maximum slip is 1.8 m and the total seismic moment is 2.4 × 1019 Nm, corresponding to a Mw value of 6.8. The slip angle shows a dominant right-lateral strike-slip mechanism, with a minor reverse component that increases on the deeper region of the fault. This result, in addition to the observed possibility of similar mechanisms for previous earthquakes occurred in 1959 and 1997, suggests that the tectonic deformation between the Cephalonia Transform Fault Zone and the northern tip of the Hellenic Arc Subduction zone may be accommodated by prevailing right lateral low-dipping faults, occurring on re-activated structures previously experiencing (until Pliocene) compressional regime. Comparison of predicted and observed tsunami data suggests the need of a better characterisation of local harbour response for this type of relatively short-wavelength events, which is important in the context of tsunami early warning. However, the suggested dominantly strike-slip character would in turn imply a reduced tsunami hazard as compared to a dominant thrust faulting regime from this source region.
    Description: Published
    Description: 1043–1054
    Description: 3T. Sorgente sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-22
    Description: On April 6th 2009, a magnitude Mw=6.1 earthquake strucks the Abruzzi region in central Italy. Despite its moderate size, the earthquake caused more than 300 fatalities and partially destroyed the city of L’Aquila and many villages in its surroundings. The main shock was preceded by an earthquake swarm which started at the end of 2008. The largest earthquakes of the swarm included a Mw=4.0, occurred on 2009/03/30 at 13:38 (UTC), and Mw=3.9 and Mw=3.5 events that occurred on 2009/04/05 at 20:48 and 22:39 (UTC) respectively. By the end of November 2009, more than 16,000 aftershocks with ML〉0.5 have been recorded by the INGV seismic network (Figure 1). Current advances in data transmission and communication yield high quality broadband velocity and strong motion waveforms in near real-time. These data allow for the rapid characterization of earthquake sources in terms of fault geometry, focal depth and seismic moment. For the L’Aquila main shock, the velocimeter data of the Italian National Sei- smic Network (INSN, code IV), MedNet (code MN, station PDG), the North-East Italy Broadband Network (code NI, stations ACOM and PALA) and the SudTirol Province (code SI, station KOSI) were available in real-time. In the following days, the strong motion data of the RAN network (“Rete Accelerometrica Nazionale”) and the displacement data recor- ded by the INGV GPS Network (Anzidei et al. 2009) also become available. In this study we present the results of the rapid source parameters determination procedure developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) (Scognamiglio et al., 2009) as applied to the L’Aquila seismic sequence. Our approach consists of two stages – the near real-time determination of the seismic moment tensor, that is already routinely performed for all ML ≥ 3.5 earthquakes, and the rapid imaging of the rupture history on a finite fault for earthquakes with ML ≥ 6.0. We present the moment tensor so- lutions computed for all the earthquakes of the L’Aquila sequence with ML ≥ 3.5, and examine the effect of the velocity structure on the main shock moment magnitude. Then we provide a detailed description of the kinematic source model of the main event by inverting both strong motion and GPS data
    Description: Unpublished
    Description: INGV, Rome, ITALY
    Description: 3.1. Fisica dei terremoti
    Description: open
    Keywords: The relevance of the velocity model on scalar moment ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-14
    Description: Probabilistic Tsunami Hazard Analysis (PTHA) quantifies the probability of exceeding a specified inundation intensity at a given location within a given time interval. PTHA provides scientific guidance for tsunami risk analysis and risk management, including coastal planning and early warning. Explicit computation of site-specific PTHA, with an adequate discretization of source scenarios combined with high-resolution numerical inundation modelling, has been out of reach with existing models and computing capabilities, with tens to hundreds of thousands of moderately intensive numerical simulations being required for exhaustive uncertainty quantification. In recent years, more efficient GPU-based High-Performance Computing (HPC) facilities, together with efficient GPU-optimized shallow water type models for simulating tsunami inundation, have now made local long-term hazard assessment feasible. A workflow has been developed with three main stages: 1) Site-specific source selection and discretization, 2) Efficient numerical inundation simulation for each scenario using the GPU-based Tsunami-HySEA numerical tsunami propagation and inundation model using a system of nested topo-bathymetric grids, and 3) Hazard aggregation. We apply this site-specific PTHA workflow here to Catania, Sicily, for tsunamigenic earthquake sources in the Mediterranean. We illustrate the workflows of the PTHA as implemented for High-Performance Computing applications, including preliminary simulations carried out on intermediate scale GPU clusters. We show how the local hazard analysis conducted here produces a more fine-grained assessment than is possible with a regional assessment. However, the new local PTHA indicates somewhat lower probabilities of exceedance for higher maximum inundation heights than the available regional PTHA. The local hazard analysis takes into account small-scale tsunami inundation features and non-linearity which the regional-scale assessment does not incorporate. However, the deterministic inundation simulations neglect some uncertainties stemming from the simplified source treatment and tsunami modelling that are embedded in the regional stochastic approach to inundation height estimation. Further research is needed to quantify the uncertainty associated with numerical inundation modelling and to properly propagate it onto the hazard results, to fully exploit the potential of site-specific hazard assessment based on massive simulations.
    Description: Published
    Description: 591549
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-24
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2019. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: Numerical simulations of earthquake ground motions are used both to anticipate the effects of hypothetical earthquakes by forward simulation and to infer the behaviour of the real earthquake source ruptures by the inversion of recorded ground motions. In either application it is necessary to assume some Earth structure that is necessarily inaccurate and to use a computational method that is also inaccurate for simulating the wavefield Green's functions. We refer to these two sources of error as ‘propagation inaccuracies’, which might be considered to be epistemic. We show that the variance of the Fourier spectrum of the synthetic earthquake seismograms caused by propagation inaccuracies is related to the spatial covariance on the rupture surface of errors in the computed Green's functions, which we estimate for the case of the 2009 L'Aquila, Italy, earthquake by comparing erroneous computed Green's functions with observed L'Aquila aftershock seismograms (empirical Green's functions). We further show that the variance of the synthetic seismograms caused by the rupture variability (aleatory uncertainty) is related to the spatial covariance on the rupture surface of aleatory variations in the rupture model, and we investigate the effect of correlated variations in Green's function errors and variations in rupture models. Thus, we completely characterize the variability of synthetic earthquake seismograms induced by errors in propagation and variability in the rupture behaviour. We calculate the spectra of the variance of the ground motions of the L'Aquila main shock caused by propagation inaccuracies for two specific broad-band stations, the AQU and the FIAM stations. These variances are distressingly large, being comparable or in some cases exceeding the data amplitudes, suggesting that the best-fitting L'Aquila rupture model significantly overfits the data and might be seriously in error. If these computed variances are typical, the accuracy of many other rupture models for past earthquakes may need to be reconsidered. The results of this work might be useful in seismic hazard estimation because the variability of the computed ground motion, caused both by propagation inaccuracies and variations in the rupture model, can be computed directly, not requiring laborious consideration of multiple Earth structures.
    Description: Published
    Description: 346–372
    Description: 3T. Sorgente sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: ShakeMap package uses empirical ground motion prediction equations (GM PEs) to estimate the ground motion where recorded data are not available. Recorded and estimated values are then interpolated in order to produce a shaking map associated to the considered event. Anyway GMPEs account only for average characteristics of source and wave propagation processes. Within the framework of the DPC-INGV S3 project (2007-09), we evaluate whether the inclusion of directivity effects in GMPEs (companion paper Spagnuolo et al., 2010) or the use of synthetic seismograms from finite-fault rupture models may improve the ShakeMap evaluation. An advantage of using simulated motions from kinematic rupture models is that source effects, as rupture directivity, are directly included in the synthetics. This is particularly interesting in Italy where the regional GMPEs, based on a few number of near-source records for moderate-to-large earthquakes, are not reliable for estimating ground motion in the vicinity of the source. In this work we investigated how and if the synthetic seismograms generated with finite-fault models can be used in place of (or in addition to) GMPEs within the ShakeMap methodology. We assumed a description of the rupture model with gradually increasing details, from a simple point source to a kinematic rupture history obtained from inversion of strong-motion data. According to the available information synthetic seismograms are calculated with methods that account for the different degree of approximation in source properties. We chose the M w 6.9 2008 Iwate-M iyagi (Japan) earthquake as a case study. This earthquake has been recorded by a very large number of stations and the corresponding ShakeMap relies almost totally on the recorded ground motions. Starting from this ideal case, we removed a number of stations in order to evaluate the deviations from the reference map and the sensitivity of the map to the number of stations used. The removed data are then substituted with synthetic values calculated assuming different source approximations, and the resulting maps are compared to the original ones (containing observed data only). The use of synthetic seismograms computed for finite-fault rupture models produces, in general, an improvement of the calculated ShakeMaps, especially when synthetics are used to integrate real data. When real data are not available and ShakeMap is estimated using GMPEs only, the improvement adding simulated values depends on the considered strong-motion parameters.
    Description: Published
    Description: Montpellier , France
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: Shakemaps ; synthetic seismograms ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-02-28
    Description: We discuss the debated issue of scale dependence in earthquake source mechanics with the goal of providing supporting evidence to foster the adoption of a coherent interpretative framework. We examine the heterogeneous distribution of source and constitutive parameters during individual ruptures and their scaling with earthquake size. We discuss evidence that slip, slip- weakening distance and breakdown work scale with seismic moment and are interpreted as scale dependent parameters. We integrate our estimates of earthquake stress drop, computed through a pseudo-dynamic ap- proach, with many others available in the literature for both point sources and finite fault models. We obtain a picture of the earthquake stress drop scaling with seis- mic moment over an exceptional broad range of earth- quake sizes (−8 〈 MW 〈 9). Our results confirm that stress drop values are scattered over three order of mag- nitude and emphasize the lack of corroborating evidence that stress drop scales with seismic moment. We discuss these results in terms of scale invariance of stress drop with source dimension to analyse the interpretation of this outcome in terms of self-similarity. Geophysicists are presently unable to provide physical explanations of dy- namic self-similarity relying on deterministic descriptions of micro-scale processes. We conclude that the interpre- tation of the self-similar behaviour of stress drop scaling is strongly model dependent. We emphasize that it relies on a geometric description of source heterogeneity through the statistical properties of initial stress or fault- surface topography, in which only the latter is constrained by observations.
    Description: Published
    Description: 1151–1170
    Description: 2T. Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-15
    Description: The 2015/11/17 Lefkada (Greece) earthquake ruptured a segment of the Cephalonia Transform Fault (CTF) where probably the penultimate major event was in 1948. Using near-source strong motion and high sampling rate GPS data and Sentinel-1A SAR images on two tracks, we performed the inversion for the geometry, slip distribution and rupture history of the causative fault with a three-step self-consistent procedure, in which every step provided input parameters for the next one. Our preferred model results in a ~70° ESE-dipping and ~13° N-striking fault plane, with a strike-slip mechanism (rake ~169°) in agreement with the CTF tectonic regime. This model shows a bilateral propagation spanning ~9 s with the activation of three main slip patches, characterized by rise time and peak slip velocity in the ranges 2.5-3.5 s and 1.4-2.4 m/s, respectively, corresponding to 1.2-1.8 m of slip which is mainly concentrated in the shallower (〈10 km) southern half of the causative fault. The inferred slip distribution and the resulting seismic moment (M0 = 1.05 × 1019N m) suggest a magnitude of Mw6.6. Our best solution suggests that the occurrence of large (Mw 〉 6) earthquakes to the northern and to the southern boundaries of the 2015 causative fault cannot be excluded.
    Description: Published
    Description: 10358
    Description: 2T. Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-02-28
    Description: In this study we investigate directivity effects associated to the August 24, 2016 Mw 6, central Italy earth- quake taking into account the source rupture heterogeneities. We use the directivity predictor proposed by Spudich et al. (2004) which is derived from the isochrones theory. The directivity is computed using a source to site geometry and a focal mechanism. For its simplicity it can be computed once that a moment tensor solution is available. We use this technique to validate the real time solutions. Moreover, because the directivity predictor depends on the rupture velocity it can be used as a proxy to validate the possible rupture history. For the aforementioned reasons our method revealed fruitful for real time applications and helpful to constrain a few main rupture features for further analysis.
    Description: Published
    Description: 2T. Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-02-28
    Description: U.S. Geological Survey
    Description: Published
    Description: 2T. Sorgente Sismica
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...