GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 67 (1992), S. 335-345 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract A mathematical model, called the Learning Gate Model (LGM), that describes phenomena responsible for biological synaptic plasticity, is presented. The functionality of the model are mainly based on the work of Kandel and colleagues on the most elementary forms of learning observed in the Aplysia Californica marine mollusc. In particular, emphasis is placed on the double temporal dynamics of synaptic plasticity and the temporal specificity of classical conditioning. By properly modeling the effect of the binding of Ca++ ions to the serotonin-sensitive adenylate cyclase enzyme, it is shown how a positively accelerated learning curve can be obtained for sensitization and classical conditioning. Phenomena of spontaneous recovery and second-order conditioning are reproduced through simulations. Mathematical analyses of the temporal trace of conditioned stimulus and of the Short-Term Memory steady state are also given.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...