GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Chromatography A 669 (1994), S. 59-64 
    ISSN: 0021-9673
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 298 (1982), S. 736-739 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Fig. 1 Geological map of Sardinia. 1, Basement with its Mesozoic and Eocene cover; 2, Cixerri Formation; 3, Oligocne-Miocne rifted basin; 4, Oligocne-Miocne calc-alkaline volcanics; 5, continental Pliocene-Quaternary basin; 6, alkaline Pliocene-Quaternary volcanics. The Sardinian Oligocne-Miocne ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1041
    Keywords: bromocriptine ; hypertension ; plasma catecholamines ; 3,4-dihydroxyphenylacetic acid ; peripheral dopamine receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary The effect of a single oral dose of bromocriptine 2.5 mg was evaluated in 11 normotensive and 6 hypertensive volunteers. 150 min after drug administration, a significant decrease in plasma noradrenaline concentration from 202 to 124 pg/ml in normotensive and from 197 to 119 pg/ml in hypertensive patients was observed. Plasma 3,4 dihydroxyphenylacetic acid, a major metabolite of dopamine, fell from 1132 to 956 pg/ml in normal subjects and from 1242 to 807 pg/ml in hypertensives. No change in plasma adrenaline was found. At the same time, mean arterial pressure showed a significant decrease from 90 to 81 and from 132 to 111 mmHg in normotensive and hypertensive subjects, respectively. Bromocriptine also inhibited the increase in noradrena-line level that occurred when the subjects changed from the supine to the standing position. The inhibition was more evident in hypertensive subjects. It is suggested that the hypotensive effect of bromocriptine is mediated by the inhibition of noradrenaline release due to the stimulation of dopamine receptors on noradrenergic nerve terminals.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    European journal of clinical pharmacology 28 (1985), S. 234-234 
    ISSN: 1432-1041
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Highlights: • Assessment of the Indian Ocean simulation from global forced sea- ice models. • SST biases are 2 times smaller in forced simulations than the coupled simulations. • Coupled model shows large inter-model spread over the eastern equatorial Indian Ocean. • Refinement in model horizontal resolution does not significantly improve simulations. • Uncover a secondary pathway of northward cross-equatorial transport along 75 °E. • Models are unable to capture the observed thick barrier layer in the north Bay of Bengal. Abstract: We present an analysis of annual and seasonal mean characteristics of the Indian Ocean circulation and water masses from 16 global ocean–sea-ice model simulations that follow the Coordinated Ocean-ice Reference Experiments (CORE) interannual protocol (CORE-II). All simulations show a similar large-scale tropical current system, but with differences in the Equatorial Undercurrent. Most CORE-II models simulate the structure of the Cross Equatorial Cell (CEC) in the Indian Ocean. We uncover a previously unidentified secondary pathway of northward cross-equatorial transport along 75 °E, thus complementing the pathway near the Somali Coast. This secondary pathway is most prominent in the models which represent topography realistically, thus suggesting a need for realistic bathymetry in climate models. When probing the water mass structure in the upper ocean, we find that the salinity profiles are closer to observations in geopotential (level) models than in isopycnal models. More generally, we find that biases are model dependent, thus suggesting a grouping into model lineage, formulation of the surface boundary, vertical coordinate and surface salinity restoring. Refinement in model horizontal resolution (one degree versus degree) does not significantly improve simulations, though there are some marginal improvements in the salinity and barrier layer results. The results in turn suggest that a focus on improving physical parameterizations (e.g. boundary layer processes) may offer more near-term advances in Indian Ocean simulations than refined grid resolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-14
    Description: We gratefully acknowledge the support of Italian Ministry of Education, University and Research and Ministry for Environment, Land and Sea through the project GEMINA. Many thanks go to Peter Kohler for providing data and to Narelle van der Wel for her help with English in this paper.
    Description: The present manuscript compares Marine Iso- tope Stage 5 (MIS 5, 125–115 kyr BP) and MIS 7 (236– 229 kyr BP) with the aim to investigate the origin of the difference in ice-sheet growth over the Northern Hemi- sphere high latitudes between these last two inceptions. Our approach combines a low resolution coupled atmosphere– ocean–sea-ice general circulation model and a 3-D thermo- mechanical ice-sheet model to simulate the state of the ice sheets associated with the inception climate states of MIS 5 and MIS 7. Our results show that external forcing (orbitals and GHG) and sea-ice albedo feedbacks are the main fac- tors responsible for the difference in the land-ice initial state between MIS 5 and MIS 7 and that our cold climate model bias impacts more during a cold inception, such as MIS 7, than during a warm inception, such as MIS 5. In addition, if proper ice-elevation and albedo feedbacks are not taken into consideration, the evolution towards glacial inception is hardly simulated, especially for MIS 7. Finally, results high- light that while simulated ice volumes for MIS 5 glacial in- ception almost fit with paleo-reconstructions, the lack of pre- cipitation over high latitudes, identified as a bias of our cli- mate model, does not allow for a proper simulation of MIS 7 glacial inception.
    Description: Italian Ministry of Education, University and Research and Ministry for Environment, Land and Sea through the project GEMINA.
    Description: Published
    Description: 269–291
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: Arctic Oscillation ; Teleconnections ; Greenhouse gases ; Glaciation ; Paleoclimate ; Ice Sheet ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-25
    Description: A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950–1999 is studied to identify and understand which components of the Asian–Australian monsoon (A–AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A–AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A–AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June–July–August SSTs in the equatorial eastern Pacific in recent decades. Among the A–AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A–AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices.
    Description: Published
    Description: 1051-1068
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: CLIVAR C20C ; Asian-Australian monsoon circulation ; AGCM ; Reproducibility ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-11-23
    Description: Using an atmospheric general circulation model coupled to a slab ocean we study the effect of ocean heat transport (OHT) on climate prescribing OHT from zero to two times the present-day values. In agreement with previous studies an increase in OHT from zero to present-day conditions warms the climate by decreasing the albedo due to reduced sea-ice extent and marine stratus cloud cover and by increasing the greenhouse effect through a moistening of the atmosphere. However, when the OHT is further increased the solution becomes highly dependent on a positive radiative feedback between tropical low clouds and sea surface temperature. We found that the strength of the low clouds-SST feedback combined with the model design may produce solutions that are globally colder than Control mainly due to an unrealistically strong equatorial cooling. Excluding those cases, results indicate that the climate warms only if the OHT increase does not exceed more than 10% of the present-day value in the case of a strong cloud-SST feedback and more than 25% when this feedback is weak. Larger OHT increases lead to a cold state where low clouds cover most of the deep tropics increasing the tropical albedo and drying the atmosphere. This suggests that the present-day climate is close to a state where the OHT maximizes its warming effect on climate and pose doubts about the possibility that greater OHT in the past may have induced significantly warmer climates than that of today.
    Description: Published
    Description: 5015–5030
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: ocean heat transport ; mixed layer model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-22
    Description: This work explores the impact of orbital parameters and greenhouse gas concentrations on the climate of marine isotope stage (MIS) 7 glacial inception and compares it to that of MIS 5. The authors use a coupled atmosphere-ocean general circulation model to simulate the mean climate state of six time slices at 115, 122, 125, 229, 236, and 239 kyr, representative of a climate evolution from interglacial to glacial inception conditions. The simulations are designed to separate the effects of orbital parameters from those of greenhouse gas (GHG). Their results show that, in all the time slices considered, MIS 7 boreal lands mean annual climate is colder than the MIS 5 one. This difference is explained at 70% by the impact of the MIS 7 GHG. While the impact of GHG over Northern Hemisphere is homogeneous, the difference in temperature between MIS 7 and MIS 5 due to orbital parameters differs regionally and is linked with the Arctic Oscillation. The perennial snow cover is larger in all the MIS 7 experiments compared to MIS 5, as a result of MIS 7 orbital parameters, strengthened by GHG. At regional scale, Eurasia exhibits the strongest response to MIS 7 cold climate with a perennial snow area 3 times larger than in MIS 5 experiments. This suggests that MIS 7 glacial inception is more favorable over this area than over North America. Furthermore, at 239 kyr, the perennial snow covers an area equivalent to that of MIS 5 glacial inception (115 kyr). The authors suggest that MIS 7 glacial inception is more extensive than MIS 5 glacial inception over the high latitudes.
    Description: Italian Ministry of Education, University and Research Ministry for Environment, Land and Sea through the project GEMINA
    Description: Published
    Description: 8918-8933
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: Arctic Oscillation ; Teleconnections ; Greenhouse gases ; Glaciation ; Paleoclimate ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-01-07
    Description: We present an analysis of annual and seasonal mean characteristics of the Indian Ocean circulation and water masses from 16 global ocean–sea-ice model simulations that follow the Coordinated Ocean-ice Reference Experiments (CORE) interannual protocol (CORE-II). All simulations show a similar large-scale tropical current system, but with differences in the Equatorial Undercurrent. Most CORE-II models simulate the structure of the Cross Equatorial Cell (CEC) in the Indian Ocean. We uncover a previously unidentified secondary pathway of northward cross-equatorial transport along 75 °E, thus complementing the pathway near the Somali Coast. This secondary pathway is most prominent in the models which represent topography realistically, thus suggesting a need for realistic bathymetry in climate models. When probing the water mass structure in the upper ocean, we find that the salinity profiles are closer to observations in geopotential (level) models than in isopycnal models. More generally, we find that biases are model dependent, thus suggesting a grouping into model lineage, formulation of the surface boundary, vertical coordinate and surface salinity restoring. Refinement in model horizontal resolution (one degree versus degree) does not significantly improve simulations, though there are some marginal improvements in the salinity and barrier layer results. The results in turn suggest that a focus on improving physical parameterizations (e.g. boundary layer processes) may offer more near-term advances in Indian Ocean simulations than refined grid resolution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...